ﻻ يوجد ملخص باللغة العربية
Consider an infinite system [partial_tu_t(x)=(mathscr{L}u_t)(x)+ sigmabigl(u_t(x)bigr)partial_tB_t(x)] of interacting It^{o} diffusions, started at a nonnegative deterministic bounded initial profile. We study local and global features of the solution under standard regularity assumptions on the nonlinearity $sigma$. We will show that, locally in time, the solution behaves as a collection of independent diffusions. We prove also that the $k$th moment Lyapunov exponent is frequently of sharp order $k^2$, in contrast to the continuous-space stochastic heat equation whose $k$th moment Lyapunov exponent can be of sharp order $k^3$. When the underlying walk is transient and the noise level is sufficiently low, we prove also that the solution is a.s. uniformly dissipative provided that the initial profile is in $ell^1(mathbf {Z}^d)$.
The study of intermittency for the parabolic Anderson problem usually focuses on the moments of the solution which can describe the high peaks in the probability space. In this paper we set up the equation on a finite spatial interval, and study the
In this paper we consider the Cauchy problem for $2m$-order stochastic partial differential equations of parabolic type in a class of stochastic Hoelder spaces. The Hoelder estimates of solutions and their spatial derivatives up to order $2m$ are obt
We show that the partition function of the multi-layer semi-discrete directed polymer converges in the intermediate disorder regime to the partition function for the multi-layer continuum polymer introduced by OConnell and Warren. This verifies, modu
We study the asymptotic behavior of solution of semi-linear PDEs. Neither periodicity nor ergodicity will be assumed. In return, we assume that the coefficients admit a limit in `{C}esaro sense. In such a case, the averaged coefficients could be disc
We give a new and constructive proof of the existence of global-in-time weak solutions of the 3-dimensional incompressible semi-geostrophic equations (SG) in geostrophic coordinates, for arbitrary initial measures with compact support. This new proof