ﻻ يوجد ملخص باللغة العربية
This paper evaluates the performance of reliability and latency in machine type communication networks, which composed of single transmitter and receiver in the presence of Rayleigh fading channel. The sources traffic arrivals are modeled as Markovian processes namely Discrete-Time Markov process, Fluid Markov process, and Markov Modulated Poisson process, and delay/buffer overflow constraints are imposed. Our approach is based on the reliability and latency outage probability, where transmitter not knowing the channel condition, therefore the transmitter would be transmitting information over the fixed rate. The fixed rate transmission is modeled as a two state Discrete time Markov process, which identifies the reliability level of wireless transmission. Using effective bandwidth and effective capacity theories, we evaluate the trade-off between reliability-latency and identify QoS requirement. The impact of different source traffic originated from MTC devices under QoS constraints on the effective transmission rate are investigated.
Flat-fading channels that are correlated in time are considered under peak and average power constraints. For discrete-time channels, a new upper bound on the capacity per unit time is derived. A low SNR analysis of a full-scattering vector channel i
Training-based transmission over Rayleigh block-fading multiple-input multiple-output (MIMO) channels is investigated. As a training method a combination of a pilot-assisted scheme and a biased signaling scheme is considered. The achievable rates of
This paper investigates delay-distortion-power trade offs in transmission of quasi-stationary sources over block fading channels by studying encoder and decoder buffering techniques to smooth out the source and channel variations. Four source and cha
The fading wire-tap channel is investigated, where the source-to-destination channel and the source-to-wire-tapper channel are corrupted by multiplicative fading gain coefficients in addition to additive Gaussian noise terms. The channel state inform
We study channel capacity when a one-bit quantizer is employed at the output of the discrete-time average-power-limited Rayleigh-fading channel. We focus on the low signal-to-noise ratio regime, where communication at very low spectral efficiencies t