ﻻ يوجد ملخص باللغة العربية
The deflection of lights trajectory has been studied in many different spacetime geometries in weak and strong gravity, including the special cases of spherically symmetric static and spinning black holes. It is also well known that the rotation of massive objects results in the dragging of inertial frames in the spacetime geometry. We present here a discussion of the asymmetry that appears explicitly in the exact analytical expression for the bending angle of light on the equatorial plane of the spinning, or Kerr, black hole.
Christodoulou and Rovelli have shown that the maximal interior volume of a Schwarzschild black hole linearly grows with time. Recently, their conclusion has been extended to the Reissner{-}Nordstr$ddot{text{o}}$m and Kerr black holes. Meanwhile, the
In this paper we compute the Arnowitt-Deser-Misner (ADM) mass, the angular momentum and the charge of the Kerr black hole solution in the scalar-tensor-vector gravity theory [known as the Kerr-MOG (modified-gravity) black hole configuration]; we stud
Acoustic black hole is becoming an attractive topic in recent years, for it open-up new direction for experimental explorations of black holes in laboratories. In this work, the gravitational bending of acoustic Schwarzschild black hole is investigat
In the present paper, we have considered the three parameters: mass, charge and rotation to discuss their combined effect on frame dragging for a charged rotating body. If we consider the ray of light which is emitted radially outward from a rotating
We analyze rigidly rotating Nambu--Goto strings in the Kerr spacetime, particularly focusing on the strings sticking in the horizon. From the regularity on the horizon, we find the condition for sticking in the horizon, which is consistent with the s