ﻻ يوجد ملخص باللغة العربية
Acoustic black hole is becoming an attractive topic in recent years, for it open-up new direction for experimental explorations of black holes in laboratories. In this work, the gravitational bending of acoustic Schwarzschild black hole is investigated. We resort to the approach developed by Gibbons and Werner, in which the gravitational bending is calculated using the Gauss-Bonnet theorem in geometrical topology. In this approach, the gravitational bending is directly connected with the topological properties of curved spacetime. The deflection angle of light for acoustic Schwarzschild black hole is calculated and carefully analyzed in this work. The results show that the gravitational bending effect in acoustic black hole is enhanced, compared with those in conventional Schwarzschild black hole. This observation indicates that the acoustic black holes may be more easily detectable in gravitational bending and weak gravitational lensing observations. Keywords: Gravitational Bending; Gauss-Bonnet Theorem; Acoustic Schwarzschild Black Hole
We study linear gravitational perturbations of Schwarzschild spacetime by solving numerically Regge-Wheeler-Zerilli equations in time domain using hyperboloidal surfaces and a compactifying radial coordinate. We stress the importance of including the
We study the spectrum of the bound state perturbations in the interior of the Schwarzschild black hole for the scalar, electromagnetic and gravitational perturbations. Demanding that the perturbations to be regular at the center of the black hole det
For the Schwarzschild black hole the Bekenstein-Hawking entropy is proportional to the area of the event horizon. For the black holes with two horizons the thermodynamics is not very clear, since the role of the inner horizons is not well established
Adopting the throat quantization pioneered by Louko and Makela, we derive the mass and area spectra for the Schwarzschild-Tangherlini black hole and its anti-de~Sitter (AdS) generalization in arbitrary dimensions. We obtain exact spectra in three spe
We investigate the topology of Schwarzschilds black hole through the immersion of this space-time in spaces of higher dimension. Through the immersions of Kasner and Fronsdal we calculate the extension of the Schwarzschilds black hole.