ﻻ يوجد ملخص باللغة العربية
We review the dramatic progress in the simulations of compact objects and compact-object binaries that has taken place in the first two decades of the twenty-first century. This includes simulations of the inspirals and violent mergers of binaries containing black holes and neutron stars, as well as simulations of black-hole formation through failed supernovae and high-mass neutron star--neutron star mergers. Modeling such events requires numerical integration of the field equations of general relativity in three spatial dimensions, coupled, in the case of neutron-star containing binaries, with increasingly sophisticated treatment of fluids, electromagnetic fields, and neutrino radiation. However, it was not until 2005 that accurate long-term evolutions of binaries containing black holes were even possible. Since then, there has been an explosion of new results and insights into the physics of strongly-gravitating system. Particular emphasis has been placed on understanding the gravitational wave and electromagnetic signatures from these extreme events. And with the recent dramatic discoveries of gravitational waves from merging black holes by the Laser Interferometric Gravitational Wave Observatory and Virgo, and the subsequent discovery of both electromagnetic and gravitational wave signals from a merging neutron star binary, numerical relativity became an indispensable tool for the new field of multimessenger astronomy.
This paper, which is meant to be a tribute to Minkowskis geometrical insight, rests on the idea that the basic observed symmetries of spacetime homogeneity and of isotropy of space, which are displayed by the spacetime manifold in the limiting situat
The traditional university science curriculum was designed to train specialists in specific disciplines. However, in universities all over the world, science students are going into increasingly diverse careers and the current model does not fit thei
We produce the first astrophysically-relevant numerical binary black hole gravitational waveform in a higher-curvature theory of gravity beyond general relativity. We simulate a system with parameters consistent with GW150914, the first LIGO detectio
We compute the periastron advance using the effective-one-body formalism for binary black holes moving on quasi-circular orbits and having spins collinear with the orbital angular momentum. We compare the predictions with the periastron advance recen
A numerical-relativity calculation yields in general a solution of the Einstein equations including also a radiative part, which is in practice computed in a region of finite extent. Since gravitational radiation is properly defined only at null infi