ترغب بنشر مسار تعليمي؟ اضغط هنا

Numerical Relativity of Compact Binaries in the 21st Century

111   0   0.0 ( 0 )
 نشر من قبل Matthew Duez
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We review the dramatic progress in the simulations of compact objects and compact-object binaries that has taken place in the first two decades of the twenty-first century. This includes simulations of the inspirals and violent mergers of binaries containing black holes and neutron stars, as well as simulations of black-hole formation through failed supernovae and high-mass neutron star--neutron star mergers. Modeling such events requires numerical integration of the field equations of general relativity in three spatial dimensions, coupled, in the case of neutron-star containing binaries, with increasingly sophisticated treatment of fluids, electromagnetic fields, and neutrino radiation. However, it was not until 2005 that accurate long-term evolutions of binaries containing black holes were even possible. Since then, there has been an explosion of new results and insights into the physics of strongly-gravitating system. Particular emphasis has been placed on understanding the gravitational wave and electromagnetic signatures from these extreme events. And with the recent dramatic discoveries of gravitational waves from merging black holes by the Laser Interferometric Gravitational Wave Observatory and Virgo, and the subsequent discovery of both electromagnetic and gravitational wave signals from a merging neutron star binary, numerical relativity became an indispensable tool for the new field of multimessenger astronomy.



قيم البحث

اقرأ أيضاً

This paper, which is meant to be a tribute to Minkowskis geometrical insight, rests on the idea that the basic observed symmetries of spacetime homogeneity and of isotropy of space, which are displayed by the spacetime manifold in the limiting situat ion in which the effects of gravity can be neglected, leads to a formulation of special relativity based on the appearance of two universal constants: a limiting speed $c$ and a cosmological constant $Lambda$ which measures a residual curvature of the universe, which is not ascribable to the distribution of matter-energy. That these constants should exist is an outcome of the underlying symmetries and is confirmed by experiments and observations, which furnish their actual values. Specifically, it turns out on these foundations that the kinematical group of special relativity is the de Sitter group $dS(c,Lambda)=SO(1,4)$. On this basis, we develop at an elementary classical and, hopefully, sufficiently didactical level the main aspects of the theory of special relativity based on SO(1,4) (de Sitter relativity). As an application, we apply the formalism to an intrinsic formulation of point particle kinematics describing both inertial motion and particle collisions and decays.
211 - Sun Kwok 2018
The traditional university science curriculum was designed to train specialists in specific disciplines. However, in universities all over the world, science students are going into increasingly diverse careers and the current model does not fit thei r needs. Advances in technology also make certain modes of learning obsolete. In the last 10 years, the Faculty of Science of the University of Hong Kong has undertaken major curriculum reforms. A sequence of science foundation courses required of all incoming science students are designed to teach science in an integrated manner, and to emphasize the concepts and utilities, not computational techniques, of mathematics. A number of non-discipline specific common core courses have been developed to broaden students awareness of the relevance of science to society and the interdisciplinary nature of science. By putting the emphasis on the scientific process rather than the outcome, students are taught how to identify, formulate, and solve diverse problems.
We produce the first astrophysically-relevant numerical binary black hole gravitational waveform in a higher-curvature theory of gravity beyond general relativity. We simulate a system with parameters consistent with GW150914, the first LIGO detectio n, in order-reduced dynamical Chern-Simons gravity, a theory with motivations in string theory and loop quantum gravity. We present results for the leading-order corrections to the merger and ringdown waveforms, as well as the ringdown quasi-normal mode spectrum. We estimate that such corrections may be discriminated in detections with signal to noise ratio $gtrsim 180-240$, with the precise value depending on the dimension of the GR waveform family used in data analysis.
We compute the periastron advance using the effective-one-body formalism for binary black holes moving on quasi-circular orbits and having spins collinear with the orbital angular momentum. We compare the predictions with the periastron advance recen tly computed in accurate numerical-relativity simulations and find remarkable agreement for a wide range of spins and mass ratios. These results do not use any numerical-relativity calibration of the effective-one-body model, and stem from two key ingredients in the effective-one-body Hamiltonian: (i) the mapping of the two-body dynamics of spinning particles onto the dynamics of an effective spinning particle in a (deformed) Kerr spacetime, fully symmetrized with respect to the two-body masses and spins, and (ii) the resummation, in the test-particle limit, of all post-Newtonian (PN) corrections linear in the spin of the particle. In fact, even when only the leading spin PN corrections are included in the effective-one-body spinning Hamiltonian but all the test-particle corrections linear in the spin of the particle are resummed we find very good agreement with the numerical results (within the numerical error for equal-mass binaries and discrepancies of at most 1% for larger mass ratios). Furthermore, we specialize to the extreme mass-ratio limit and derive, using the equations of motion in the gravitational skeleton approach, analytical expressions for the periastron advance, the meridional Lense-Thirring precession and spin precession frequency in the case of a spinning particle on a nearly circular equatorial orbit in Kerr spacetime, including also terms quadratic in the spin.
A numerical-relativity calculation yields in general a solution of the Einstein equations including also a radiative part, which is in practice computed in a region of finite extent. Since gravitational radiation is properly defined only at null infi nity and in an appropriate coordinate system, the accurate estimation of the emitted gravitational waves represents an old and non-trivial problem in numerical relativity. A number of methods have been developed over the years to extract the radiative part of the solution from a numerical simulation and these include: quadrupole formulas, gauge-invariant metric perturbations, Weyl scalars, and characteristic extraction. We review and discuss each method, in terms of both its theoretical background as well as its implementation. Finally, we provide a brief comparison of the various methods in terms of their inherent advantages and disadvantages.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا