ترغب بنشر مسار تعليمي؟ اضغط هنا

Science Education in the 21st Century

212   0   0.0 ( 0 )
 نشر من قبل Sun Kwok
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Sun Kwok




اسأل ChatGPT حول البحث

The traditional university science curriculum was designed to train specialists in specific disciplines. However, in universities all over the world, science students are going into increasingly diverse careers and the current model does not fit their needs. Advances in technology also make certain modes of learning obsolete. In the last 10 years, the Faculty of Science of the University of Hong Kong has undertaken major curriculum reforms. A sequence of science foundation courses required of all incoming science students are designed to teach science in an integrated manner, and to emphasize the concepts and utilities, not computational techniques, of mathematics. A number of non-discipline specific common core courses have been developed to broaden students awareness of the relevance of science to society and the interdisciplinary nature of science. By putting the emphasis on the scientific process rather than the outcome, students are taught how to identify, formulate, and solve diverse problems.



قيم البحث

اقرأ أيضاً

The answers to fundamental science questions in astrophysics, ranging from the history of the expansion of the universe to the sizes of nearby stars, hinge on our ability to make precise measurements of diverse astronomical objects. As our knowledge of the underlying physics of objects improves along with advances in detectors and instrumentation, the limits on our capability to extract science from measurements is set, not by our lack of understanding of the nature of these objects, but rather by the most mundane of all issues: the precision with which we can calibrate observations in physical units. We stress the need for a program to improve upon and expand the current networks of spectrophotometrically calibrated stars to provide precise calibration with an accuracy of equal to and better than 1% in the ultraviolet, visible and near-infrared portions of the spectrum, with excellent sky coverage and large dynamic range.
The authors use an action research (AR) approach in a collegiate studio physics class to investigate the power of partnerships via conferences as they relate to issues of establishing a student/mentor rapport, empowering students to reduce inequity, and the successes and barriers to hearing students voices. The graduate teaching assistant (TA, Author 1) conducted one-on-one conferences with 29 students, elicited student opinions about the progress of the course, and talked with faculty, TAs, and an undergraduate supplemental instructor for other sections of the course. At the end of the semester, the students reported increased knowledge of the TA as a person and as an instructor, and vice versa. Sixty-five percent of students reported no interest in changing circumstances to make it easier to talk about personal concerns with the TA. College students reluctantly voiced their opinions about the course, possibly due to the power structure of the classroom. Other TAs in the department expressed mostly disinterest in the project, while faculty members were interested in student learning but skeptical of student empowerment. A case study of one student is presented, wherein his attendance improved in the course and he received additional help outside class, both possibly as a result of the student/TA conferences. Students in this studio physics section were more likely to interact directly with faculty or TAs during lectures, but less likely to do so during lab sessions, than were students in a non-studio physics section.
183 - A.P. Micolich 2008
YouTube (http://www.youtube.com) is an online, public-access video-sharing site that allows users to post short streaming-video submissions for open viewing. Along with Google, MySpace, Facebook, etc. it is one of the great success stories of the Int ernet, and is widely used by many of todays undergraduate students. The higher education sector has recently realised the potential of YouTube for presenting teaching resources/material to students, and publicising research. This article considers another potential use for online video archiving websites such as YouTube and GoogleVideo in higher education - as an online video archive providing thousands of hours of video footage for use in lectures. In this article I will discuss why this might be useful, present some examples that demonstrate the potential for YouTube as a teaching resource, and highlight some of the copyright and legal issues that currently impact on the effective use of new online video websites, such as YouTube, for use as a teaching resource.
Background: Qualitative interviewing is a common tool that has been utilized by Science, Technology, Engineering, and Mathematics (STEM) education researchers to explore and describe the experiences of students, educators, or other educational stakeh olders. Some interviewing techniques use co-creation of an artifact, such as a personal timeline, as a unique way to elicit a detailed narrative from a respondent. The purpose of this commentary is to describe an interview artifact called a life grid. First used and validated in medical sociology to conduct life course research, we adapted the life grid for use in research on undergraduate STEM education. We applied the life grid interview technique to two contexts: 1) students in an advance degree program reflecting on their entire undergraduate career as a biology major, and 2) students in an undergraduate physics program reflecting on a multi-week lab project. Results: We found that the life grid supported four important attributes of an interview: facilitation of the respondents agency, establishment of rapport between interviewers and respondents, enhanced depth of the respondents narratives, and the construction of more accurate accounts of events. We situate our experiences with respect to those attributes and compare them with the experiences detailed in literature. Conclusions: We conclude with recommendations for future use of the life grid technique in undergraduate STEM education research. Overall, we find the life grid to be a valuable tool to use when conducting interviews about phenomena with a chronological component.
General-education college astronomy courses offer instructors both a unique audience and a unique challenge. For many students, such a course may be their first time encountering a standalone astronomy class, and it is also likely one of the last sci ence courses they will take. Thus, in a single semester, primary course goals often include both imparting knowledge about the Universe and giving students some familiarity with the processes of science. In traditional course environments, students often compartmentalize information into separate life files and course files rather than integrating information into a coherent framework. The astronomy course created through this project, taught at the University of Arizona in Spring 2019, was designed around inclusivity-driven guiding principles that help students engage with course content in ways that are meaningful, relevant, and accessible. Our course bridges the gap between students life and course files, encourages and respects diverse points of view, and empowers students to connect course content with their personal lives and identities. In this paper, we provide insight into the guiding principles that informed our course design and share research results on the effectiveness of the instructional strategies and assessment techniques implemented in the course.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا