ترغب بنشر مسار تعليمي؟ اضغط هنا

Testing for Balance in Social Networks

65   0   0.0 ( 0 )
 نشر من قبل Derek Feng
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

Friendship and antipathy exist in concert with one another in real social networks. Despite the role they play in social interactions, antagonistic ties are poorly understood and infrequently measured. One important theory of negative ties that has received relatively little empirical evaluation is balance theory, the codification of the adage `the enemy of my enemy is my friend and similar sayings. Unbalanced triangles are those with an odd number of negative ties, and the theory posits that such triangles are rare. To test for balance, previous works have utilized a permutation test on the edge signs. The flaw in this method, however, is that it assumes that negative and positive edges are interchangeable. In reality, they could not be more different. Here, we propose a novel test of balance that accounts for this discrepancy and show that our test is more accurate at detecting balance. Along the way, we prove asymptotic normality of the test statistic under our null model, which is of independent interest. Our case study is a novel dataset of signed networks we collected from 32 isolated, rural villages in Honduras. Contrary to previous results, we find that there is only marginal evidence for balance in social tie formation in this setting.



قيم البحث

اقرأ أيضاً

Social influence cannot be identified from purely observational data on social networks, because such influence is generically confounded with latent homophily, i.e., with a nodes network partners being informative about the nodes attributes and ther efore its behavior. If the network grows according to either a latent community (stochastic block) model, or a continuous latent space model, then latent homophilous attributes can be consistently estimated from the global pattern of social ties. We show that, for comm
144 - Carter T. Butts 2017
Continuous mixtures of distributions are widely employed in the statistical literature as models for phenomena with highly divergent outcomes; in particular, many familiar heavy-tailed distributions arise naturally as mixtures of light-tailed distrib utions (e.g., Gaussians), and play an important role in applications as diverse as modeling of extreme values and robust inference. In the case of social networks, continuous mixtures of graph distributions can likewise be employed to model social processes with heterogeneous outcomes, or as robust priors for network inference. Here, we introduce some simple families of network models based on continuous mixtures of baseline distributions. While analytically and computationally tractable, these models allow more flexible modeling of cross-graph heterogeneity than is possible with conventional baseline (e.g., Bernoulli or $U|man$ distributions). We illustrate the utility of these baseline mixture models with application to problems of multiple-network ERGMs, network evolution, and efficient network inference. Our results underscore the potential ubiquity of network processes with nontrivial mixture behavior in natural settings, and raise some potentially disturbing questions regarding the adequacy of current network data collection practices.
There is an increased appreciation for, and utilization of, social networks to disseminate various kinds of interventions in a target population. Homophily, the tendency of people to be similar to those they interact with, can create within-group coh esion but at the same time can also lead to societal segregation. In public health, social segregation can form barriers to the spread of health interventions from one group to another. We analyzed the structure of social networks in 75 villages in Karnataka, India, both at the level of individuals and network communities. We found all villages to be strongly segregated at the community level, especially along the lines of caste and sex, whereas other socioeconomic variables, such as age and education, were only weakly associated with these groups in the network. While the studied networks are densely connected, our results indicate that the villages are highly segregated.
Social networks have become ubiquitous in our daily life, as such it has attracted great research interests recently. A key challenge is that it is of extremely large-scale with tremendous information flow, creating the phenomenon of Big Data. Under such a circumstance, understanding information diffusion over social networks has become an important research issue. Most of the existing works on information diffusion analysis are based on either network structure modeling or empirical approach with dataset mining. However, the information diffusion is also heavily influenced by network users decisions, actions and their socio-economic connections, which is generally ignored in existing works. In this paper, we propose an evolutionary game theoretic framework to model the dynamic information diffusion process in social networks. Specifically, we analyze the framework in uniform degree and non-uniform degree networks and derive the closed-form expressions of the evolutionary stable network states. Moreover, the information diffusion over two special networks, ErdH{o}s-Renyi random network and the Barabasi-Albert scale-free network, are also highlighted. To verify our theoretical analysis, we conduct experiments by using both synthetic networks and real-world Facebook network, as well as real-world information spreading dataset of Twitter and Memetracker. Experiments shows that the proposed game theoretic framework is effective and practical in modeling the social network users information forwarding behaviors.
With the availability of cell phones, internet, social media etc. the interconnectedness of people within most societies has increased drastically over the past three decades. Across the same timespan, we are observing the phenomenon of increasing le vels of fragmentation in society into relatively small and isolated groups that have been termed filter bubbles, or echo chambers. These pose a number of threats to open societies, in particular, a radicalisation in political, social or cultural issues, and a limited access to facts. In this paper we show that these two phenomena might be tightly related. We study a simple stochastic co-evolutionary model of a society of interacting people. People are not only able to update their opinions within their social context, but can also update their social links from collaborative to hostile, and vice versa. The latter is implemented such that social balance is realised. We find that there exists a critical level of interconnectedness, above which society fragments into small sub-communities that are positively linked within and hostile towards other groups. We argue that the existence of a critical communication density is a universal phenomenon in all societies that exhibit social balance. The necessity arises from the underlying mathematical structure of a phase transition phenomenon that is known from the theory of a kind of disordered magnets called spin glasses. We discuss the consequences of this phase transition for social fragmentation in society.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا