ترغب بنشر مسار تعليمي؟ اضغط هنا

Baseline Mixture Models for Social Networks

145   0   0.0 ( 0 )
 نشر من قبل Carter Butts
 تاريخ النشر 2017
والبحث باللغة English
 تأليف Carter T. Butts




اسأل ChatGPT حول البحث

Continuous mixtures of distributions are widely employed in the statistical literature as models for phenomena with highly divergent outcomes; in particular, many familiar heavy-tailed distributions arise naturally as mixtures of light-tailed distributions (e.g., Gaussians), and play an important role in applications as diverse as modeling of extreme values and robust inference. In the case of social networks, continuous mixtures of graph distributions can likewise be employed to model social processes with heterogeneous outcomes, or as robust priors for network inference. Here, we introduce some simple families of network models based on continuous mixtures of baseline distributions. While analytically and computationally tractable, these models allow more flexible modeling of cross-graph heterogeneity than is possible with conventional baseline (e.g., Bernoulli or $U|man$ distributions). We illustrate the utility of these baseline mixture models with application to problems of multiple-network ERGMs, network evolution, and efficient network inference. Our results underscore the potential ubiquity of network processes with nontrivial mixture behavior in natural settings, and raise some potentially disturbing questions regarding the adequacy of current network data collection practices.



قيم البحث

اقرأ أيضاً

Friendship and antipathy exist in concert with one another in real social networks. Despite the role they play in social interactions, antagonistic ties are poorly understood and infrequently measured. One important theory of negative ties that has r eceived relatively little empirical evaluation is balance theory, the codification of the adage `the enemy of my enemy is my friend and similar sayings. Unbalanced triangles are those with an odd number of negative ties, and the theory posits that such triangles are rare. To test for balance, previous works have utilized a permutation test on the edge signs. The flaw in this method, however, is that it assumes that negative and positive edges are interchangeable. In reality, they could not be more different. Here, we propose a novel test of balance that accounts for this discrepancy and show that our test is more accurate at detecting balance. Along the way, we prove asymptotic normality of the test statistic under our null model, which is of independent interest. Our case study is a novel dataset of signed networks we collected from 32 isolated, rural villages in Honduras. Contrary to previous results, we find that there is only marginal evidence for balance in social tie formation in this setting.
Neural networks offer a versatile, flexible and accurate approach to loss reserving. However, such applications have focused primarily on the (important) problem of fitting accurate central estimates of the outstanding claims. In practice, properties regarding the variability of outstanding claims are equally important (e.g., quantiles for regulatory purposes). In this paper we fill this gap by applying a Mixture Density Network (MDN) to loss reserving. The approach combines a neural network architecture with a mixture Gaussian distribution to achieve simultaneously an accurate central estimate along with flexible distributional choice. Model fitting is done using a rolling-origin approach. Our approach consistently outperforms the classical over-dispersed model both for central estimates and quantiles of interest, when applied to a wide range of simulated environments of various complexity and specifications. We further extend the MDN approach by proposing two extensions. Firstly, we present a hybrid GLM-MDN approach called ResMDN. This hybrid approach balances the tractability and ease of understanding of a traditional GLM model on one hand, with the additional accuracy and distributional flexibility provided by the MDN on the other. We show that it can successfully improve the errors of the baseline ccODP, although there is generally a loss of performance when compared to the MDN in the examples we considered. Secondly, we allow for explicit projection constraints, so that actuarial judgement can be directly incorporated in the modelling process. Throughout, we focus on aggregate loss triangles, and show that our methodologies are tractable, and that they out-perform traditional approaches even with relatively limited amounts of data. We use both simulated data -- to validate properties, and real data -- to illustrate and ascertain practicality of the approaches.
The aim of this paper is to present a mixture composite regression model for claim severity modelling. Claim severity modelling poses several challenges such as multimodality, heavy-tailedness and systematic effects in data. We tackle this modelling problem by studying a mixture composite regression model for simultaneous modeling of attritional and large claims, and for considering systematic effects in both the mixture components as well as the mixing probabilities. For model fitting, we present a group-fused regularization approach that allows us for selecting the explanatory variables which significantly impact the mixing probabilities and the different mixture components, respectively. We develop an asymptotic theory for this regularized estimation approach, and fitting is performed using a novel Generalized Expectation-Maximization algorithm. We exemplify our approach on real motor insurance data set.
Social influence cannot be identified from purely observational data on social networks, because such influence is generically confounded with latent homophily, i.e., with a nodes network partners being informative about the nodes attributes and ther efore its behavior. If the network grows according to either a latent community (stochastic block) model, or a continuous latent space model, then latent homophilous attributes can be consistently estimated from the global pattern of social ties. We show that, for comm
This paper concerns the use of Markov chain Monte Carlo methods for posterior sampling in Bayesian nonparametric mixture models with normalized random measure priors. Making use of some recent posterior characterizations for the class of normalized r andom measures, we propose novel Markov chain Monte Carlo methods of both marginal type and conditional type. The proposed marginal samplers are generalizations of Neals well-regarded Algorithm 8 for Dirichlet process mixture models, whereas the conditional sampler is a variation of those recently introduced in the literature. For both the marginal and conditional methods, we consider as a running example a mixture model with an underlying normalized generalized Gamma process prior, and describe comparative simulation results demonstrating the efficacies of the proposed methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا