ﻻ يوجد ملخص باللغة العربية
We derive two field theory models of interacting dark energy, one in which dark energy is associated with the quintessence and another in which it is associated with the tachyon. In both, instead of choosing arbitrarily the potential of scalar fields, these are specified implicitly by imposing that the dark energy fields must behave as the new agegraphic dark energy. The resulting models are compared with the Pantheon supernovae sample, CMB distance information from Planck 2015 data, baryonic acoustic oscillations (BAO) and Hubble parameter data. For comparison, the noninteracting case and the $Lambda CDM$ model also are considered. By use of the $ AIC $ and $ BIC $ criteria, we obtain strong evidence in favor of the two interacting models, and the coupling constants are nonvanishing at more than $3sigma$ confidence level.
The recent GW170817 measurement favors the simplest dark energy models, such as a single scalar field. Quintessence models can be classified in two classes, freezing and thawing, depending on whether the equation of state decreases towards $-1$ or de
We apply a parametric reconstruction method to a homogeneous, isotropic and spatially flat Friedmann-Robertson-Walker (FRW) cosmological model filled of a fluid of dark energy (DE) with constant equation of state parameter interacting with dark matte
We use observational data from Supernovae (SNIa) Pantheon sample, as well as from direct measurements of the Hubble parameter from the cosmic chronometers (CC) sample, in order to extract constraints on the scenario of Barrow holographic dark energy.
For the constant-roll tachyon inflation, we derive the analytical expressions for the scalar and tensor power spectra, the scalar and tensor spectral tilts and the tensor to scalar ratio up to the first order by using the method of Bessel function ap
The recent observation of the the gravitational wave event GW170817 and of its electromagnetic counterpart GRB170817A, from a binary neutron star merger, has established that the speed of gravitational waves deviates from the speed of light by less t