ﻻ يوجد ملخص باللغة العربية
Reflection and refraction occur at interface between two different media. These two fundamental phenomena form the basis of fabricating various wave components. Specifically, refraction, dubbed positive refraction nowadays, appears in the opposite side of the interface normal with respect to the incidence. Negative refraction, emerging in the same side by contrast, has been observed in artificial materials1-5 following a prediction by Veslago6, which has stimulated many fascinating applications such as super-resolution imaging7. Here we report the first discovery of negative refraction of the topological surface arc states of Weyl crystals, realized for airborne sound in a novel woodpile phononic crystal. The interfaces are one-dimensional edges that separate different crystal facets. By tailoring the surface terminations of such a Weyl phononic crystal, open equifrequency contours of surface acoustic waves can be delicately designed to produce the negative refraction, to contrast the positive counterpart realized in the same sample. Strikingly different from the conventional interfacial phenomena, the unwanted reflection can be made forbidden by exploiting the open nature of the surface equifrequency contours, which is a topologically protected surface hallmark of Weyl crystals8-12.
We present a theoretical framework allowing to properly address the nature of surface-like eigenmodes in a hypersonic surface phononic crystal, a composite structure made of periodic metal stripes of nanometer size and periodicity of 1 micron, deposi
Spin-1 Weyl point is formed by three bands touching at a single point in the three dimensional (3D) momentum space, with two of which show cone-like dispersion while the third band is flat. Such a triply degenerate point carries higher topological ch
It is generally believed that Veselagos criterion for negative refraction cannot be fulfilled in natural materials. However, considering imaginary parts of the permittivity ({epsilon}) and permeability ({mu}) and for metals at not too high frequencie
The rising need for hybrid physical platforms has triggered a renewed interest for the development of agile radio-frequency phononic circuits with complex functionalities. The combination of travelling waves with resonant mechanical elements appears
We design and implement a three dimensional acoustic Weyl metamaterial hosting robust modes bound to a one-dimensional topological lattice defect. The modes are related to topological features of the bulk bands, and carry nonzero orbital angular mome