ﻻ يوجد ملخص باللغة العربية
We present a theoretical framework allowing to properly address the nature of surface-like eigenmodes in a hypersonic surface phononic crystal, a composite structure made of periodic metal stripes of nanometer size and periodicity of 1 micron, deposited over a semi-infinite silicon substrate. In surface-based phononic crystals there is no distinction between the eigenmodes of the periodically nanostructured overlayer and the surface acoustic modes of the semi-infinite substrate, the solution of the elastic equation being a pseudo-surface acoustic wave partially localized on the nanostructures and radiating energy into the bulk. This problem is particularly severe in the hypersonic frequency range, where semi-infinite substrates surface acoustic modes strongly couple to the periodic overlayer, thus preventing any perturbative approach. We solve the problem introducing a surface-likeness coefficient as a tool allowing to find pseudo-surface acoustic waves and to calculate their line shapes. Having accessed the pseudo-surface modes of the composite structure, the same theoretical frame allows reporting on the gap opening in the now well-defined pseudo-SAW frequency spectrum. We show how the filling fraction, mass loading and geometric factors affect both the frequency gap, and how the mechanical energy is scattered out of the surface waveguiding modes.
We report a negative resistance, namely, a voltage drop along the opposite direction of a current flow, in the superconducting gap of NbSe$_2$ thin films under the irradiation of surface acoustic waves (SAWs). The amplitude of the negative resistance
It has recently been demonstrated that surface acoustic waves (SAWs) can interact with superconducting qubits at the quantum level. SAW resonators in the GHz frequency range have also been found to have low loss at temperatures compatible with superc
Magnons, namely spin waves, are collective spin excitations in ferromagnets, and their control through coupling with other excitations is a key technology for future hybrid spintronic devices. Although strong coupling has been demonstrated with micro
We investigate the modulation of optical phonons in semiconductor crystal by surface acoustic wave (SAW) propagating on the crystal surface. The SAW fields induce changes on the order of 10textsuperscript{-3} in the average Raman scattering intensity
The rising need for hybrid physical platforms has triggered a renewed interest for the development of agile radio-frequency phononic circuits with complex functionalities. The combination of travelling waves with resonant mechanical elements appears