ﻻ يوجد ملخص باللغة العربية
We report on the selective-area chemical beam epitaxial growth of InAs in-plane, one-dimensional (1-D) channels using patterned SiO$_{2}$-coated InP(001), InP(111)B, and InP(110) substrates to establish a scalable platform for topological superconductor networks. Top-view scanning electron micrographs show excellent surface selectivity and dependence of major facet planes on the substrate orientations and ridge directions, and the ratios of the surface energies of the major facet planes were estimated. Detailed structural properties and defects in the InAs nanowires (NWs) were characterized by transmission electron microscopic analysis of cross-sections perpendicular to the NW ridge direction and along the NW ridge direction. Electrical transport properties of the InAs NWs were investigated using Hall bars, a field effect mobility device, a quantum dot, and an Aharonov-Bohm loop device, which reflect the strong spin-orbit interaction and phase-coherent transport characteristic in the selectively grown InAs systems. This study demonstrates that selective-area chemical beam epitaxy is a scalable approach to realize semiconductor 1-D channel networks with the excellent surface selectivity and this material system is suitable for quantum transport studies.
Epitaxial layers of the topological insulator Bi2Se3 have been grown by molecular beam epitaxy on laterally lattice-matched InP(111)B substrates. High resolution X-ray diffraction shows a significant improvement of Bi2Se3 crystal quality compared to
Time- and spectrally-resolved PL from a periodic array of InP/InAs/InP core-multishell nanowires is presented. InAs layer shows multipeak PL spectra. PL decay is nonexponential and very slow, with decay rate depending on energy.
The heteroepitaxy of III-V semiconductors on silicon is a promising approach for making silicon a photonic platform for on-chip optical interconnects and quantum optical applications. Monolithic integration of both material systems is a long-time cha
Exciton spin and related optical polarization in self-assembled InAs/In$_{0.53}$Ga$_{0.23}$Al$_{0.24}$As/InP(001) quantum dashes emitting at 1.55 {mu}m are investigated by means of polarization- and time-resolved photoluminescence, as well as photolu
We have studied the surface modifications as well as the surface roughness of the InP(111) surfaces after 1.5 MeV Sb ion implantations. Scanning Probe Microscope (SPM) has been utilized to investigate the ion implanted InP(111) surfaces. We observe t