ترغب بنشر مسار تعليمي؟ اضغط هنا

Molecular beam epitaxy of high structural quality Bi2Se3 on lattice matched InP(111) substrates

127   0   0.0 ( 0 )
 نشر من قبل Steffen Schreyeck
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Epitaxial layers of the topological insulator Bi2Se3 have been grown by molecular beam epitaxy on laterally lattice-matched InP(111)B substrates. High resolution X-ray diffraction shows a significant improvement of Bi2Se3 crystal quality compared to layers deposited on other substrates. The measured full width at half maximum of the rocking curve is Delta omega=13 arcsec, and the (omega-2theta) scans exhibit clear layer thickness fringes. Atomic force microscope images show triangular twin domains with sizes increasing with layer thickness. The structural quality of the domains is confirmed on the microscopic level by transmission electron microscopy.



قيم البحث

اقرأ أيضاً

Atomically thin PtSe2 films have attracted extensive research interests for potential applications in high-speed electronics, spintronics and photodetectors. Obtaining high quality, single crystalline thin films with large size is critical. Here we r eport the first successful layer-by-layer growth of high quality PtSe2 films by molecular beam epitaxy. Atomically thin films from 1 ML to 22 ML have been grown and characterized by low-energy electron diffraction, Raman spectroscopy and X-ray photoemission spectroscopy. Moreover, a systematic thickness dependent study of the electronic structure is revealed by angle-resolved photoemission spectroscopy (ARPES), and helical spin texture is revealed by spin-ARPES. Our work provides new opportunities for growing large size single crystalline films for investigating the physical properties and potential applications of PtSe2.
We show that the morphology of the initial monolayers of InP on Al0.48In0.52As grown by metalorganic vapor-phase epitaxy does not follow the expected layer-by-layer growth mode of lattice-matched systems, but instead develops a number of low-dimensio nal structures, e.g., quantum dots and wires. We discuss how the macroscopically strain-free heteroepitaxy might be strongly affected by local phase separation/alloying-induced strain and that the preferred aggregation of adatom species on the substrate surface and reduced wettability of InP on AlInAs surfaces might be the cause of the unusual (step) organization and morphology
163 - B. Li , W. G. Chen , X. Guo 2016
High-index Bi2Se3(221) film has been grown on In2Se3-buffered GaAs(001), in which a much retarded strain relaxation dynamics is recorded. The slow strain-relaxation process of in epitaxial Bi2Se3(221) can be attributed to the layered structure of Bi2 Se3 crystal, where the epifilm grown along [221] is like a pile of weakly-coupled quintuple layer slabs stacked side-by-side on substrate. Finally, we have revealed the strong chemical bonding at the interface of Bi2Se3 and In2Se3 by plotting differential charge contour calculated by first-principle method. This study points to the feasibility of achieving strained TIs for manipulating the properties of topological systems.
Materials with a layered Kagome lattice are expected to give rise to novel physics arising from band structures with topological properties, spin liquid behavior and the formation of skyrmions. Until now, most work on Kagome materials has been perfor med on bulk samples due to difficulties in thin film synthesis. Here, by using molecular beam epitaxy, layered Kagome-structured FeSn films are synthesized on (111) oriented LaAlO3 substrate. Both in-situ and ex-situ characterizations indicate these films are highly crystalline and c-axis oriented, with atomically smooth surfaces. However, the films grow as disconnected islands, with lateral dimensions on the micron scale. By patterning Pt electrodes using a focused electron beam, longitudinal and transverse resistance of single islands have been measured in magnetic fields. Our work opens a pathway for exploring mesoscale transport properties in thin films of Kagome materials and related devices.
127 - L. Riney , C. Bunker , S.-K. Bac 2020
SrxBi2Se3 is a candidate topological superconductor but its superconductivity requires the intercalation of Sr by into the van-der-Waals gaps of Bi2Se3. We report the synthesis of SrxBi2Se3 thin films by molecular beam epitaxy, and we characterize th eir structural, vibrational and electrical properties. X-ray diffraction and Raman spectroscopy show evidence of substitutional Sr alloying into the structure, while transport measurements allow us to correlate the increasing Sr content with an increased n-type doping, but do not reveal superconductivity down to 1.5K. Our results suggest that Sr predominantly occupies sites within a quintuple layer, simultaneously substituting for Bi and as an interstitial. Our results motivate future density functional studies to further investigate the energetics of Sr substitution into Bi2Se3.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا