ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep Learning Super-Resolution Enables Rapid Simultaneous Morphological and Quantitative Magnetic Resonance Imaging

93   0   0.0 ( 0 )
 نشر من قبل Akshay Chaudhari
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Obtaining magnetic resonance images (MRI) with high resolution and generating quantitative image-based biomarkers for assessing tissue biochemistry is crucial in clinical and research applications. How- ever, acquiring quantitative biomarkers requires high signal-to-noise ratio (SNR), which is at odds with high-resolution in MRI, especially in a single rapid sequence. In this paper, we demonstrate how super-resolution can be utilized to maintain adequate SNR for accurate quantification of the T2 relaxation time biomarker, while simultaneously generating high- resolution images. We compare the efficacy of resolution enhancement using metrics such as peak SNR and structural similarity. We assess accuracy of cartilage T2 relaxation times by comparing against a standard reference method. Our evaluation suggests that SR can successfully maintain high-resolution and generate accurate biomarkers for accelerating MRI scans and enhancing the value of clinical and research MRI.



قيم البحث

اقرأ أيضاً

Volumetric imaging by fluorescence microscopy is often limited by anisotropic spatial resolution from inferior axial resolution compared to the lateral resolution. To address this problem, here we present a deep-learning-enabled unsupervised super-re solution technique that enhances anisotropic images in volumetric fluorescence microscopy. In contrast to the existing deep learning approaches that require matched high-resolution target volume images, our method greatly reduces the effort to put into practice as the training of a network requires as little as a single 3D image stack, without a priori knowledge of the image formation process, registration of training data, or separate acquisition of target data. This is achieved based on the optimal transport driven cycle-consistent generative adversarial network that learns from an unpaired matching between high-resolution 2D images in lateral image plane and low-resolution 2D images in the other planes. Using fluorescence confocal microscopy and light-sheet microscopy, we demonstrate that the trained network not only enhances axial resolution, but also restores suppressed visual details between the imaging planes and removes imaging artifacts.
With super-resolution optical microscopy, it is now possible to observe molecular interactions in living cells. The obtained images have a very high spatial precision but their overall quality can vary a lot depending on the structure of interest and the imaging parameters. Moreover, evaluating this quality is often difficult for non-expert users. In this work, we tackle the problem of learning the quality function of super- resolution images from scores provided by experts. More specifically, we are proposing a system based on a deep neural network that can provide a quantitative quality measure of a STED image of neuronal structures given as input. We conduct a user study in order to evaluate the quality of the predictions of the neural network against those of a human expert. Results show the potential while highlighting some of the limits of the proposed approach.
Purpose: To develop a fast magnetic resonance fingerprinting (MRF) method for quantitative chemical exchange saturation transfer (CEST) imaging. Methods: We implemented a CEST-MRF method to quantify the chemical exchange rate and volume fraction of the N${alpha}$-amine protons of L-arginine (L-Arg) phantoms and the amide and semi-solid exchangeable protons of in vivo rat brain tissue. L-Arg phantoms were made with different concentrations (25-100 mM) and pH (pH 4-6). The MRF acquisition schedule varied the saturation power randomly for 30 iterations (phantom: 0-6 ${mu}$T; in vivo: 0-4 ${mu}$T) with a total acquisition time of <=2 minutes. The signal trajectories were pattern-matched to a large dictionary of signal trajectories simulated using the Bloch-McConnell equations for different combinations of exchange rate, exchangeable proton volume fraction, and water T1 and T2* relaxation times. Results: The chemical exchange rates of the N${alpha}$-amine protons of L-Arg were significantly (p<0.0001) correlated with the rates measured with the Quantitation of Exchange using Saturation Power method. Similarly, the L-Arg concentrations determined using MRF were significantly (p<0.0001) correlated with the known concentrations. The pH dependence of the exchange rate was well fit (R2=0.9186) by a base catalyzed exchange model. The amide proton exchange rate measured in rat brain cortex (36.3+-12.9 Hz) was in good agreement with that measured previously with the Water Exchange spectroscopy method (28.6+-7.4 Hz). The semi-solid proton volume fraction was elevated in white (11.2+-1.7%) compared to gray (7.6+-1.8%) matter brain regions in agreement with previous magnetization transfer studies. Conclusion: CEST-MRF provides a method for fast, quantitative CEST imaging.
Although wireless capsule endoscopy is the preferred modality for diagnosis and assessment of small bowel diseases, the poor camera resolution is a substantial limitation for both subjective and automated diagnostics. Enhanced-resolution endoscopy ha s shown to improve adenoma detection rate for conventional endoscopy and is likely to do the same for capsule endoscopy. In this work, we propose and quantitatively validate a novel framework to learn a mapping from low-to-high resolution endoscopic images. We combine conditional adversarial networks with a spatial attention block to improve the resolution by up to factors of 8x, 10x, 12x, respectively. Quantitative and qualitative studies performed demonstrate the superiority of EndoL2H over state-of-the-art deep super-resolution methods DBPN, RCAN and SRGAN. MOS tests performed by 30 gastroenterologists qualitatively assess and confirm the clinical relevance of the approach. EndoL2H is generally applicable to any endoscopic capsule system and has the potential to improve diagnosis and better harness computational approaches for polyp detection and characterization. Our code and trained models are available at https://github.com/CapsuleEndoscope/EndoL2H.
197 - Yan Wu1 , 2 , + 2021
Magnetic resonance imaging (MRI) offers superior soft tissue contrast and is widely used in biomedicine. However, conventional MRI is not quantitative, which presents a bottleneck in image analysis and digital healthcare. Typically, additional scans are required to disentangle the effect of multiple parameters of MR and extract quantitative tissue properties. Here we investigate a data-driven strategy Q^2 MRI (Qualitative and Quantitative MRI) to derive quantitative parametric maps from standard MR images without additional data acquisition. By taking advantage of the interdependency between various MRI parametric maps buried in training data, the proposed deep learning strategy enables accurate prediction of tissue relaxation properties as well as other biophysical and biochemical characteristics from a single or a few images with conventional T_1/T_2 weighting. Superior performance has been achieved in quantitative MR imaging of the knee and liver. Q^2 MRI promises to provide a powerful tool for a variety of biomedical applications and facilitate the next generation of digital medicine.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا