ﻻ يوجد ملخص باللغة العربية
The Kremer-Grest (KG) model is a standard for studying generic polymer properties. Here we have equilibrated KG melts up to and beyond $200$ entanglements per chain for varying chain stiffness. We present methods for estimating the Kuhn length corrected for incompressibility effects, for estimating the entanglement length corrected for chain stiffness, for estimating bead frictions and Kuhn times taking into account entanglement effects. These are the key parameters for enabling quantitative, accurate, and parameter free comparisons between theory, experiment and simulations of KG polymer models with varying stiffness. We demonstrate this for the mean-square monomer displacements in moderately to highly entangled melts as well as for the shear relaxation modulus for unentangled melts, which are found to be in excellent agreement with the predictions from standard theories of polymer dynamics.
We study the dynamical properties of semiflexible polymers with a recently introduced bead-spring model. We focus on double-stranded DNA. The two parameters of the model, $T^*$ and $ u$, are chosen to match its experimental force-extension curve. The
The Kremer-Grest (KG) bead-spring model is a near standard in Molecular Dynamic simulations of generic polymer properties. It owes its popularity to its computational efficiency, rather than its ability to represent specific polymer species and condi
We simulate a relaxation process of non-brownian particles in a sheared viscous medium; the small shear strain is initially applied to a system, which then undergoes relaxation. The relaxation time and the correlation length are estimated as function
Self-avoiding polymers in two-dimensional ($d=2$) melts are known to adopt compact configurations of typical size $R(N) sim N^{1/d}$ with $N$ being the chain length. Using molecular dynamics simulations we show that the irregular shapes of these chai