ترغب بنشر مسار تعليمي؟ اضغط هنا

Kremer-Grest models for universal properties of specific common polymer species

182   0   0.0 ( 0 )
 نشر من قبل Carsten Svaneborg
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Kremer-Grest (KG) bead-spring model is a near standard in Molecular Dynamic simulations of generic polymer properties. It owes its popularity to its computational efficiency, rather than its ability to represent specific polymer species and conditions. Here we investigate how to adapt the model to match the universal properties of a wide range of chemical polymers species. For this purpose we vary a single parameter originally introduced by Faller and Muller-Plathe, the chain stiffness. Examples include polystyrene, polyethylene, polypropylene, cis-polyisoprene, polydimethylsiloxane, polyethyleneoxide and styrene-butadiene rubber. We do this by matching the number of Kuhn segments per chain and the number of Kuhn segments per cubic Kuhn volume for the polymer species and for the Kremer-Grest model. We also derive mapping relations for converting KG model units back to physical units, in particular we obtain the entanglement time for the KG model as function of stiffness allowing for a time mapping. To test these relations, we generate large equilibrated well entangled polymer melts, and measure the entanglement moduli using a static primitive-path analysis of the entangled melt structure as well as by simulations of step-strain deformation of the model melts. The obtained moduli for our model polymer melts are in good agreement with the experimentally expected moduli.



قيم البحث

اقرأ أيضاً

The Kremer-Grest (KG) model is a standard for studying generic polymer properties. Here we have equilibrated KG melts up to and beyond $200$ entanglements per chain for varying chain stiffness. We present methods for estimating the Kuhn length correc ted for incompressibility effects, for estimating the entanglement length corrected for chain stiffness, for estimating bead frictions and Kuhn times taking into account entanglement effects. These are the key parameters for enabling quantitative, accurate, and parameter free comparisons between theory, experiment and simulations of KG polymer models with varying stiffness. We demonstrate this for the mean-square monomer displacements in moderately to highly entangled melts as well as for the shear relaxation modulus for unentangled melts, which are found to be in excellent agreement with the predictions from standard theories of polymer dynamics.
Advanced chain-growth computer simulation methodologies have been employed for a systematic statistical analysis of the critical behavior of a polymer adsorbing at a substrate. We use finitesize scaling techniques to investigate the solvent-quality d ependence of critical exponents, critical temperature, and the structure of the phase diagram. Our study covers all solvent effects from the limit of super-self-avoiding walks, characterized by effective monomer-monomer repulsion, to poor solvent conditions that enable the formation of compact polymer structures. The results significantly benefit from taking into account corrections to scaling.
151 - Zipeng Xu , Ruikun Sun , Wei Lu 2020
In addition to the terminal flow (the region I) and the shear thinning (the region II), we discover two new flow regions in capillary flow at the wall stress higher than the plateau modulus of the polymer. The region III violates the empirical Cox-Me rz rule with a significantly weaker shear thinning than the region II, and the region IV exhibits unexpected shear thickening. Moreover, the crossover shear rates between the regions II and III and between the regions III and IV scale with the number of entanglement per chain, Z=M_w/M_e, as Z^(-2.0) and Z^(-1.2) respectively. We attribute the weakening in shear thinning and the emergence of shear thickening to the deformation-induced non-Gaussian stretching of polymers. These observations offer the first experimental quantification of the deformation behaviors of polymer melts at high-stress shear.
We study the dynamics of driven polymer translocation using both molecular dynamics (MD) simulations and a theoretical model based on the non-equilibrium tension propagation on the {it cis} side subchain. We present theoretical and numerical evidence that the non-universal behavior observed in experiments and simulations are due to finite chain length effects that persist well beyond the relevant experimental and simulation regimes. In particular, we consider the influence of the pore-polymer interactions and show that they give a major contribution to the non-universal effects. In addition, we present comparisons between the theory and MD simulations for several quantities, showing extremely good agreement in the relevant parameter regimes. Finally, we discuss the potential limitations of the present theories.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا