ترغب بنشر مسار تعليمي؟ اضغط هنا

A Tutorial on Network Embeddings

59   0   0.0 ( 0 )
 نشر من قبل Haochen Chen
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Network embedding methods aim at learning low-dimensional latent representation of nodes in a network. These representations can be used as features for a wide range of tasks on graphs such as classification, clustering, link prediction, and visualization. In this survey, we give an overview of network embeddings by summarizing and categorizing recent advancements in this research field. We first discuss the desirable properties of network embeddings and briefly introduce the history of network embedding algorithms. Then, we discuss network embedding methods under different scenarios, such as supervised versus unsupervised learning, learning embeddings for homogeneous networks versus for heterogeneous networks, etc. We further demonstrate the applications of network embeddings, and conclude the survey with future work in this area.



قيم البحث

اقرأ أيضاً

Textual network embeddings aim to learn a low-dimensional representation for every node in the network so that both the structural and textual information from the networks can be well preserved in the representations. Traditionally, the structural a nd textual embeddings were learned by models that rarely take the mutual influences between them into account. In this paper, a deep neural architecture is proposed to effectively fuse the two kinds of informations into one representation. The novelties of the proposed architecture are manifested in the aspects of a newly defined objective function, the complementary information fusion method for structural and textual features, and the mutual gate mechanism for textual feature extraction. Experimental results show that the proposed model outperforms the comparing methods on all three datasets.
The large-scale online management systems (e.g. Moodle), online web forums (e.g. Piazza), and online homework systems (e.g. WebAssign) have been widely used in the blended courses recently. Instructors can use these systems to deliver class content a nd materials. Students can communicate with the classmates, share the course materials, and discuss the course questions via the online forums. With the increased use of the online systems, a large amount of students interaction data has been collected. This data can be used to analyze students learning behaviors and predict students learning outcomes. In this work, we collected students interaction data in three different blended courses. We represented the data as directed graphs and investigated the correlation between the social graph properties and students final grades. Our results showed that in all these classes, students who asked more answers and received more feedbacks on the forum tend to obtain higher grades. The significance of this work is that we can use the results to encourage students to participate more in forums to learn the class materials better; we can also build a predictive model based on the social metrics to show us low performing students early in the semester.
281 - Pengfei Jiao , Xuan Guo , Ting Pan 2021
Recently, Network Embedding (NE) has become one of the most attractive research topics in machine learning and data mining. NE approaches have achieved promising performance in various of graph mining tasks including link prediction and node clusteri ng and classification. A wide variety of NE methods focus on the proximity of networks. They learn community-oriented embedding for each node, where the corresponding representations are similar if two nodes are closer to each other in the network. Meanwhile, there is another type of structural similarity, i.e., role-based similarity, which is usually complementary and completely different from the proximity. In order to preserve the role-based structural similarity, the problem of role-oriented NE is raised. However, compared to community-oriented NE problem, there are only a few role-oriented embedding approaches proposed recently. Although less explored, considering the importance of roles in analyzing networks and many applications that role-oriented NE can shed light on, it is necessary and timely to provide a comprehensive overview of existing role-oriented NE methods. In this review, we first clarify the differences between community-oriented and role-oriented network embedding. Afterwards, we propose a general framework for understanding role-oriented NE and a two-level categorization to better classify existing methods. Then, we select some representative methods according to the proposed categorization and briefly introduce them by discussing their motivation, development and differences. Moreover, we conduct comprehensive experiments to empirically evaluate these methods on a variety of role-related tasks including node classification and clustering (role discovery), top-k similarity search and visualization using some widely used synthetic and real-world datasets...
Social media has been on the vanguard of political information diffusion in the 21st century. Most studies that look into disinformation, political influence and fake-news focus on mainstream social media platforms. This has inevitably made English a n important factor in our current understanding of political activity on social media. As a result, there has only been a limited number of studies into a large portion of the world, including the largest, multilingual and multi-cultural democracy: India. In this paper we present our characterisation of a multilingual social network in India called ShareChat. We collect an exhaustive dataset across 72 weeks before and during the Indian general elections of 2019, across 14 languages. We investigate the cross lingual dynamics by clustering visually similar images together, and exploring how they move across language barriers. We find that Telugu, Malayalam, Tamil and Kannada languages tend to be dominant in soliciting political images (often referred to as memes), and posts from Hindi have the largest cross-lingual diffusion across ShareChat (as well as images containing text in English). In the case of images containing text that cross language barriers, we see that language translation is used to widen the accessibility. That said, we find cases where the same image is associated with very different text (and therefore meanings). This initial characterisation paves the way for more advanced pipelines to understand the dynamics of fake and political content in a multi-lingual and non-textual setting.
We study social networks and focus on covert (also known as hidden) networks, such as terrorist or criminal networks. Their structures, memberships and activities are illegal. Thus, data about covert networks is often incomplete and partially incorre ct, making interpreting structures and activities of such networks challenging. For legal reasons, real data about active covert networks is inaccessible to researchers. To address these challenges, we introduce here a network generator for synthetic networks that are statistically similar to a real network but void of personal information about its members. The generator uses statistical data about a real or imagined covert organization network. It generates randomized instances of the Stochastic Block model of the network groups but preserves this network organizational structure. The direct use of such anonymized networks is for training on them the research and analytical tools for finding structure and dynamics of covert networks. Since these synthetic networks differ in their sets of edges and communities, they can be used as a new source for network analytics. First, they provide alternative interpretations of the data about the original network. The distribution of probabilities for these alternative interpretations enables new network analytics. The analysts can find community structures which are frequent, therefore stable under perturbations. They may also analyze how the stability changes with the strength of perturbation. For covert networks, the analysts can quantify statistically expected outcomes of interdiction. This kind of analytics applies to all complex network in which the data are incomplete or partially incorrect.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا