ﻻ يوجد ملخص باللغة العربية
Recently, Network Embedding (NE) has become one of the most attractive research topics in machine learning and data mining. NE approaches have achieved promising performance in various of graph mining tasks including link prediction and node clustering and classification. A wide variety of NE methods focus on the proximity of networks. They learn community-oriented embedding for each node, where the corresponding representations are similar if two nodes are closer to each other in the network. Meanwhile, there is another type of structural similarity, i.e., role-based similarity, which is usually complementary and completely different from the proximity. In order to preserve the role-based structural similarity, the problem of role-oriented NE is raised. However, compared to community-oriented NE problem, there are only a few role-oriented embedding approaches proposed recently. Although less explored, considering the importance of roles in analyzing networks and many applications that role-oriented NE can shed light on, it is necessary and timely to provide a comprehensive overview of existing role-oriented NE methods. In this review, we first clarify the differences between community-oriented and role-oriented network embedding. Afterwards, we propose a general framework for understanding role-oriented NE and a two-level categorization to better classify existing methods. Then, we select some representative methods according to the proposed categorization and briefly introduce them by discussing their motivation, development and differences. Moreover, we conduct comprehensive experiments to empirically evaluate these methods on a variety of role-related tasks including node classification and clustering (role discovery), top-k similarity search and visualization using some widely used synthetic and real-world datasets...
Since many real world networks are evolving over time, such as social networks and user-item networks, there are increasing research efforts on dynamic network embedding in recent years. They learn node representations from a sequence of evolving gra
Nodes in networks may have one or more functions that determine their role in the system. As opposed to local proximity, which captures the local context of nodes, the role identity captures the functional role that nodes play in a network, such as b
The real-world networks often compose of different types of nodes and edges with rich semantics, widely known as heterogeneous information network (HIN). Heterogeneous network embedding aims to embed nodes into low-dimensional vectors which capture r
Dynamic Network Embedding (DNE) has recently attracted considerable attention due to the advantage of network embedding in various applications and the dynamic nature of many real-world networks. For dynamic networks, the degree of changes, i.e., def
Considering the wide application of network embedding methods in graph data mining, inspired by the adversarial attack in deep learning, this paper proposes a Genetic Algorithm (GA) based Euclidean Distance Attack strategy (EDA) to attack the network