ترغب بنشر مسار تعليمي؟ اضغط هنا

Photoproduction of $K^+K^-$ meson pairs on the proton

86   0   0.0 ( 0 )
 نشر من قبل Marco Battaglieri
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The exclusive reaction $gamma p to p K^+ K^-$ was studied in the photon energy range $3.0 - 3.8 mbox{ GeV}$ and momentum transfer range $0.6<-t<1.3 mbox{ GeV}^2$. Data were collected with the CLAS detector at the Thomas Jefferson National Accelerator Facility. In this kinematic range the integrated luminosity was approximately 20 pb$^{-1}$. The reaction was isolated by detecting the $K^+$ and the proton in CLAS, and reconstructing the $K^-$ via the missing-mass technique. Moments of the di-kaon decay angular distributions were extracted from the experimental data. Besides the dominant contribution of the $phi$ meson in the $P$-wave, evidence for $S-P$ interference was found. The differential production cross sections $dsigma/dt$ for individual waves in the mass range of the $phi$ resonance were extracted and compared to predictions of a Regge-inspired model. This is the first time the $t$-dependent cross section of the $S$-wave contribution to the elastic $K^+K^-$ photoproduction has been measured.



قيم البحث

اقرأ أيضاً

137 - Q.J. Ye , M. Hartmann , Y. Maeda 2012
Differential and total cross sections for the pp -> ppK+K- reaction have been measured at a proton beam energy of 2.83 GeV using the COSY-ANKE magnetic spectrometer. Detailed model descriptions fitted to a variety of one-dimensional distributions per mit the separation of the pp -> pp phi cross section from that of non-phi production. The differential spectra show that higher partial waves represent the majority of the pp -> pp phi total cross section at an excess energy of 76 MeV, whose energy dependence would then seem to require some s-wave phi-p enhancement near threshold. The non-phi data can be described in terms of the combined effects of two-body final state interactions using the same effective scattering parameters determined from lower energy data.
The near threshold total cross section and angular distributions of K+K- pair production via the reaction pp --> ppK+K- have been studied at an excess energy of Q = 17 MeV using the COSY-11 facility at the cooler synchrotron COSY. The obtained cross section as well as an upper limit at an excess energy of Q = 3 MeV represent the first measurements on the K+K- production in the region of small excess energies where production via the channel pp --> pp Phi --> ppK+K- is energetically forbidden. The possible influence of a resonant production via intermediate scalar states f0(980) and a0(980) is discussed.
The $bar{rm p} $ over p multiplicity ratio is measured in deep-inelastic scattering for the first time using (anti-) protons carrying a large fraction of the virtual-photon energy, $z>0.5$. The data were obtained by the COMPASS Collaboration using a 160 GeV muon beam impinging on an isoscalar $^6$LiD target. The regime of deep-inelastic scattering is ensured by requiring $Q^2$ > 1 (GeV/$c$)$^2$ for the photon virtuality and $W > 5$ GeV/$c^2$ for the invariant mass of the produced hadronic system. The range in Bjorken-$x$ is restricted to $0.01 < x < 0.40$. Protons and antiprotons are identified in the momentum range $20 div 60$ GeV/$c$. In the whole studied $z$-region, the $bar{rm p}$ over p multiplicity ratio is found to be below the lower limit expected from calculations based on leading-order perturbative Quantum Chromodynamics (pQCD). Extending our earlier analysis of the K$^-$ over K$^+$ multiplicity ratio by including now events with larger virtual-photon energies, this ratio becomes closer to the expectation of next-to-leading order pQCD. The results of both analyses strengthen our earlier conclusion that the phase space available for hadronisation should be taken into account in the pQCD formalism.
Differential cross sections for the gamma p -> pi^0 p reaction have been measured with the A2 tagged-photon facilities at the Mainz Microtron, MAMI C, up to the center-of-mass energy W=1.9 GeV. The new results, obtained with a fine energy and angular binning, increase the existing quantity of pi^0 photoproduction data by ~47%. Owing to the unprecedented statistical accuracy and the full angular coverage, the results are sensitive to high partial-wave amplitudes. This is demonstrated by the decomposition of the differential cross sections in terms of Legendre polynomials and by further comparison to model predictions. A new solution of the SAID partial-wave analysis obtained after adding the new data into the fit is presented.
The differential cross section, $dsigma/dt$ for $omega$ meson exclusive photoproduction on the proton above the resonance region ($2.6<W<2.9$ GeV) was measured up to a momentum transfer $-t = 5$ GeV$^2$ using the CLAS detector at Jefferson Laboratory . The $omega$ channel was identified by detecting a proton and $pi^+$ in the final state and using the missing mass technique. While the low momentum transfer region shows the typical diffractive pattern expected from Pomeron and Reggeon exchange, at large $-t$ the differential cross section has a flat behavior. This feature can be explained by introducing quark interchange processes in addition to the QCD-inspired two-gluon exchange.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا