ﻻ يوجد ملخص باللغة العربية
By combining electron energy-loss spectroscopy and state-of-the-art computational methods, we were able to provide an extensive picture of the excitonic processes in $1T$-HfS$_2$. The results differ significantly from the properties of the more scrutinized group VI semiconducting transition metal dichalcogenides such as MoS$_2$ and WSe$_2$. The measurements revealed a parabolic exciton dispersion for finite momentum $textbf{q}$ parallel to the $Gamma$K direction which allowed the determination of the effective exciton mass. The dispersion decreases monotonically for momentum exchanges parallel to the $Gamma$M high symmetry line. To gain further insight into the excitation mechanisms, we solved the ab-initio Bethe-Salpeter equation for the system. The results matched the experimental loss spectra closely, thereby confirming the excitonic nature of the observed transitions, and produced the momentumdependent binding energies. The simulations also demonstrated that the excitonic transitions for $textbf{q}$ || $Gamma$M occur exactly along that particular high symmetry line. For $textbf{q}$ || $Gamma$K on the other hand, the excitations traverse the Brillouin zone crossing various high symmetry lines. A particular interesting aspect of our findings was that the calculation of the electron probability density revealed that the exciton assumes a six-pointed star-like shape along the real space crystal planes indicating a mixed Frenkel-Wannier character.
We combine infrared absorption and Raman scattering spectroscopies to explore the properties of the heavy transition metal dichalcogenide 1T-HfS$_2$. We employ the LO-TO splitting of the $E_u$ vibrational mode along with a reevaluation of mode mass,
We have studied potassium-intercalated bulk HfS$_2$ and HfSe$_2$ by combining transmission electron energy loss spectroscopy, angle-resolved photoemission spectroscopy and density functional theory calculations. Calculations of the formation energies
A damping-like spin orbit torque (SOT) is a prerequisite for ultralow power spin logic devices. Here, we report on the damping-like SOT in just one monolayer of the conducting transition metal dichalcogenide (TMD) TaS$_2$ interfaced with a NiFe (Py)
The transition metal dichalcogenides 1T-TaS$_2$ and 1T-TaSe$_2$ have been extensively studied for the complicated correlated electronic properties. The origin of different surface electronic states remains controversial. We apply scanning tunneling m
The valley pseudospin in monolayer transition metal dichalcogenides (TMDs) has been proposed as a new way to manipulate information in various optoelectronic devices. This relies on a large valley polarization that remains stable over long timescales