ترغب بنشر مسار تعليمي؟ اضغط هنا

The spectral content of SDO/AIA 1600 and 1700 AA filters from flare and plage observations

64   0   0.0 ( 0 )
 نشر من قبل Paulo Sim\\~oes
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The strong enhancement of the ultraviolet emission during solar flares is usually taken as an indication of plasma heating in the lower solar atmosphere caused by the deposition of the energy released during these events. Images taken with broadband ultraviolet filters by the {em Transition Region and Coronal Explorer} (TRACE) and {em Atmospheric Imaging Assembly} (AIA 1600 and 1700~AA) have revealed the morphology and evolution of flare ribbons in great detail. However, the spectral content of these images is still largely unknown. Without the knowledge of the spectral contribution to these UV filters, the use of these rich imaging datasets is severely limited. Aiming to solve this issue, we estimate the spectral contributions of the AIA UV flare and plage images using high-resolution spectra in the range 1300 to 1900~AA from the Skylab NRL SO82B spectrograph. We find that the flare excess emission in AIA 1600~AA is { dominated by} the ion{C}{4} 1550~AA doublet (26%), ion{Si}{1} continua (20%), with smaller contributions from many other chromospheric lines such as ion{C}{1} 1561 and 1656~AA multiplets, ion{He}{2} 1640~AA, ion{Si}{2} 1526 and 1533~AA. For the AIA 1700~AA band, ion{C}{1} 1656~AA multiplet is the main contributor (38%), followed by ion{He}{2} 1640 (17%), and accompanied by a multitude of other, { weaker} chromospheric lines, with minimal contribution from the continuum. Our results can be generalized to state that the AIA UV flare excess emission is of chromospheric origin, while plage emission is dominated by photospheric continuum emission in both channels.



قيم البحث

اقرأ أيضاً

Context. Theoretical calculations have shown that when solar prominences move away from the surface of the Sun, their radiative output is affected via the Doppler dimming or brightening effects. Aims. In this paper we ask whether observational signat ures of the changes in the radiative output of eruptive prominences can be found in EUV (extreme ultraviolet) observations of the first resonance line of ionised helium at 304 {AA}. We also investigate whether these observations can be used to perform a diagnostic of the plasma of the eruptive prominence. Methods. We first look for suitable events in the SDO/AIA database. The variation of intensity of arbitrarily selected features in the 304 channel is studied as a function of velocity in the plane of the sky. These results are then compared with new non-LTE radiative transfer calculations of the intensity of the He II 304 resonance line. Results. We find that observations of intensities in various parts of the four eruptive prominences studied here are sometimes consistent with the Doppler dimming effect on the He II 304 {AA} line. However, in some cases, one observes an increase in intensity in the 304 channel with velocity, in contradiction to what is expected from the Doppler dimming effect alone. The use of the non-LTE models allows us to explain the different behaviour of the intensity by changes in the plasma parameters inside the prominence, in particular the column mass of the plasma and its temperature. Conclusions. The non-LTE models used here are more realistic than what was used in previous calculations. They are able to reproduce qualitatively the range of observations from SDO/AIA analysed in this study. Thanks to non-LTE modelling, we can infer the plasma parameters in eruptive prominences from SDO/AIA observations at 304 {AA}.
Waves have long been thought to contribute to the heating of the solar corona and the generation of the solar wind. Recent observations have demonstrated evidence of quasi-periodic longitudinal disturbances and ubiquitous transverse wave propagation in many different coronal environments. This paper investigates signatures of different types of oscillatory behaviour, both above the solar limb and on-disk, by comparing findings from the Coronal Multi-channel Polarimeter (CoMP) and the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO) for the same active region. We study both transverse and longitudinal motion by comparing and contrasting time-distance images of parallel and perpendicular cuts along/across active region fan loops. Comparisons between parallel space-time features in CoMP Doppler velocity and transverse oscillations in AIA images are made, together with space-time analysis of propagating quasi-periodic intensity features seen near the base of loops in AIA. Signatures of transverse motions are observed along the same magnetic structure using CoMP Doppler velocity (Vphase=600-750km/s, P=3-6mins) and in AIA/SDO above the limb (P=3-8mins). Quasi-periodic intensity features (Vphase=100-200km/s, P=6-11mins) also travel along the base of the same structure. On the disk, signatures of both transverse and longitudinal intensity features were observed by AIA; both show similar properties to signatures found along structures anchored in the same active region three days earlier above the limb. Correlated features are recovered by space-time analysis of neighbouring tracks over perpendicular distances of <2.6Mm.
We report an observation of a partially erupting prominence and associated dynamical plasma processes based on observations recorded by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO). The prominence first goes th rough a slow rise (SR) phase followed by a fast rise (FR). The slow rise phase started after a couple of small brightenings seen toward the footpoints. At the turning point from SR to FR, the prominence had already become kinked. The prominence shows strong brightening at the central kink location during the start of FR. We interpret this as internal magnetic reconnection occurring at a vertical current sheet forming between the two legs of the erupting prominence (flux-rope). The brightening at the central kink location is seen in all the EUV channels of AIA. The contributions of differential emission at higher temperatures are larger compared to that for typical coronal temperatures supporting a reconnection scenario at the central kink location. The plasma above the brightening location gets ejected as a hot plasmoid-like structure embedded in a CME, and those below drain down in the form of blobs moving towards the Suns surface. The unique time resolution of the AIA has allowed all of these eruptive aspects, including SR-to-FR, kinking, central current sheet formation, plasmoid-like eruption, and filament splitting, to be observed in a single event, providing strong and comprehensive evidence in favour of the model of partially erupting flux ropes.
We present an analysis of off-limb cool flare loops observed by SDO/AIA during the gradual phase of SOL2017-09-10T16:06 X8.2-class flare. In the EUV channels starting from the 335 {AA} one, cool loops appear as dark structures against the bright loop arcade. These dark structures were precisely coaligned (spatially and temporally) with loops observed by SST in emission lines of hydrogen and ionized calcium. Recently published semi-empirical model of cool loops based on SST observations serves us to predict the level of hydrogen and helium recombination continua. The continua were synthesized using an approximate non-LTE approach and theoretical spectra were then transformed to AIA signals. Comparison with signals detected inside the dark loops shows that only in AIA 211 {AA} channel the computed level of recombination continua is consistent with observations for some models, while in all other channels which are more distant from the continua edges the synthetic continuum is far too low. In analogy with on-disk observations of flares we interpret the surplus emission as due to numerous EUV lines emitted from hot but faint loops in front of the cool ones. Finally we briefly comment on failure of the standard absorption model when used for analysis of the dark-loop brightness.
114 - Sujin Kim , Kiyoto Shibasaki , 2013
We found systematic microwave source motions along a flare-arcade using Nobeyama Radioheliograph (NoRH) 17 GHz images. The motions were associated with a X-class disk flare which occurred on 15th February 2011. For this study, we also used EUV images from Atmospheric Imaging Assembly (AIA) and magnetograms from Helioseismic and Magnetic Imager (HMI) onboard Solar Dynamics Observatory, and multi-channel microwave data from Nobeyama Radiopolarimeters (NoRP) and Korean Solar Radio Burst Locator (KSRBL). We traced centroids of the microwave source observed by NoRH 17 GHz during the flare and found two episodes of the motion with several facts: 1) The microwave source moved systematically along the flare-arcade, which was observed by the AIA 94 A in a direction parallel to the neutral line. 2) The period of each episode was 5 min and 14 min, respectively. 3) Estimated parallel speed was 34 km/s for the first episode and 22 km/s for the second episode. The spectral slope of microwave flux above 10 GHz obtained by NoRP and KSRBL was negative for both episodes, and for the last phase of the second episodes, it was flat with the flux of 150 sfu. The negative spectrum and the flat with high flux indicate that the gyrosynchrotron emission from accelerated electrons was dominant during the source motions. The sequential images from the AIA 304 A and 94 A channels revealed that there were successive plasma eruptions and each eruption was initiated just before the start time of the microwave sources motion. Based on the results, we suggest that the microwave source motion manifests the displacement of the particle acceleration site caused by plasma eruptions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا