ﻻ يوجد ملخص باللغة العربية
Waves have long been thought to contribute to the heating of the solar corona and the generation of the solar wind. Recent observations have demonstrated evidence of quasi-periodic longitudinal disturbances and ubiquitous transverse wave propagation in many different coronal environments. This paper investigates signatures of different types of oscillatory behaviour, both above the solar limb and on-disk, by comparing findings from the Coronal Multi-channel Polarimeter (CoMP) and the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO) for the same active region. We study both transverse and longitudinal motion by comparing and contrasting time-distance images of parallel and perpendicular cuts along/across active region fan loops. Comparisons between parallel space-time features in CoMP Doppler velocity and transverse oscillations in AIA images are made, together with space-time analysis of propagating quasi-periodic intensity features seen near the base of loops in AIA. Signatures of transverse motions are observed along the same magnetic structure using CoMP Doppler velocity (Vphase=600-750km/s, P=3-6mins) and in AIA/SDO above the limb (P=3-8mins). Quasi-periodic intensity features (Vphase=100-200km/s, P=6-11mins) also travel along the base of the same structure. On the disk, signatures of both transverse and longitudinal intensity features were observed by AIA; both show similar properties to signatures found along structures anchored in the same active region three days earlier above the limb. Correlated features are recovered by space-time analysis of neighbouring tracks over perpendicular distances of <2.6Mm.
We report an observation of a partially erupting prominence and associated dynamical plasma processes based on observations recorded by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO). The prominence first goes th
Context. Theoretical calculations have shown that when solar prominences move away from the surface of the Sun, their radiative output is affected via the Doppler dimming or brightening effects. Aims. In this paper we ask whether observational signat
Taking advantage of both the high temporal and spatial resolution of the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO), we studied a limb coronal shock wave and its associated extreme ultraviolet (EUV) wave that occ
The strong enhancement of the ultraviolet emission during solar flares is usually taken as an indication of plasma heating in the lower solar atmosphere caused by the deposition of the energy released during these events. Images taken with broadband
We report on the variability of rotation periods of solar coronal layers with respect to temperature (or, height). For this purpose, we have used the observations from Atmospheric Imaging Assembly (AIA) telescope on board Solar Dynamics Observatory (