ترغب بنشر مسار تعليمي؟ اضغط هنا

Tidal Interactions in Post Common-Envelope sdB Binaries

94   0   0.0 ( 0 )
 نشر من قبل Holly Preece
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Over half of all observed hot subdwarf B (sdB) stars are found in binaries, and over half of these are found in close configurations with orbital periods of 10$ ,rm{d}$ or less. In order to estimate the companion masses in these predominantly single-lined systems, tidal locking has frequently been assumed for sdB binaries with periods less than half a day. Observed non-synchronicity of a number of close sdB binaries challenges that assumption and hence provides an ideal testbed for tidal theory. We solve the second-order differential equations for detailed 1D stellar models of sdB stars to obtain the tidal dissipation strength and hence to estimate the tidal synchronization time-scale owing to Zahns dynamical tide. The results indicate synchronization time-scales longer than the sdB lifetime in all observed cases. Further, we examine the roles of convective overshooting and convective dissipation in the core of sdB stars and find no theoretical framework in which tidally-induced synchronization should occur.



قيم البحث

اقرأ أيضاً

77 - F. DellAgli 2020
Modelling dust formation in single stars evolving through the carbon-star stage of the asymptotic giant branch (AGB) reproduces well the mid-infrared colours and magnitudes of most of the C-rich sources in the Large Magellanic Cloud (LMC), apart from a small subset of extremely red objects (EROs). The analysis of EROs spectral energy distribution suggests the presence of large quantities of dust, which demand gas densities in the outflow significantly higher than expected from theoretical modelling. We propose that binary interaction mechanisms that involve common envelope (CE) evolution could be a possible explanation for these peculiar stars; the CE phase is favoured by the rapid growth of the stellar radius occurring after C$/$O overcomes unity. Our modelling of the dust provides results consistent with the observations for mass-loss rates $dot M sim 5times 10^{-4}~dot M/$yr, a lower limit to the rapid loss of the envelope experienced in the CE phase. We propose that EROs could possibly hide binaries of orbital periods $sim$days and are likely to be responsible for a large fraction of the dust production rate in galaxies.
We present a catalogue containing 839 candidate post common envelope systems. Common envelope evolution is very important in stellar astrophysics, particularly in the context of very compact and short-period binaries, including cataclysmic variables, as progenitors of e.g. supernovae type Ia or mergers of black holes and/or neutron stars. At the same time it is a barely understood process in binary evolution. Due to limitations, since partially remedied, on direct simulation, early investigations were mainly focused on providing analytic prescriptions of the outcome of common envelope evolution. In recent years, detailed hydrodynamical calculations have produced deeper insight into the previously elusive process of envelope ejection. However, a direct link between observations and theory of this relatively short-lived phase in binary evolution has not been forthcoming. Therefore, the main insight to be gained from observations has to be derived from the current state of systems likely to have gone through a common envelope. Here we present an extensive catalogue of such observations as found in the literature. The aim of this paper is to provide a reliable set of data, obtained from observations, to be used in the theoretical modelling of common envelope evolution. In this catalogue, the former common envelope donor star is commonly observed as a white dwarf star or as a hot sub-dwarf star. This catalogue includes period and mass estimates, wherever obtainable. Some binaries are border line cases to allow an investigation of the transition between a common envelope formation and other mass-transfer processes.
Context. An important ingredient in binary evolution is the common-envelope (CE) phase. Although this phase is believed to be responsible for the formation of many close binaries, the process is not well understood. Aims. We investigate the character istics of the population of post-common-envelope binaries (PCEB). As the evolution of these binaries and their stellar components are relatively simple, this population can be directly used to constraint CE evolution. Methods. We use the binary population synthesis code SeBa to simulate the current-day population of PCEBs in the Galaxy. We incorporate the selection effects in our model that are inherent to the general PCEB population and that are specific to the SDSS survey, which enables a direct comparison for the first time between the synthetic and observed population of visible PCEBs. Results. We find that selection effects do not play a significant role on the period distribution of visible PCEBs. To explain the observed dearth of long-period systems, the {alpha}-CE efficiency of the main evolutionary channel must be low. In the main channel, the CE is initiated by a red giant as it fills its Roche lobe in a dynamically unstable way. Other evolutionary paths cannot be constrained more. Additionally our model reproduces well the observed space density, the fraction of visible PCEBs amongst white dwarf (WD)- main sequence (MS) binaries, and the WD mass versus MS mass distribution, but overestimates the fraction of PCEBs with helium WD companions.
We apply population synthesis techniques to calculate the present day population of post-common envelope binaries (PCEBs) for a range of theoretical models describing the common envelope (CE) phase. Adopting the canonical energy budget approach we co nsider models where the ejection efficiency, $alpha_{rmn{CE}}$ is either a constant, or a function of the secondary mass. We obtain the envelope binding energy from detailed stellar models of the progenitor primary, with and without the thermal and ionization energy, but we also test a commonly used analytical scaling. We also employ the alternative angular momentum budget approach, known as the $gamma$-algorithm. We find that a constant, global value of $alpha_{rmn{CE}} ga 0.1$ can adequately account for the observed population of PCEBs with late spectral-type secondaries. However, this prescription fails to reproduce IK Pegasi, which has a secondary with spectral type A8. We can account for IK Pegasi if we include thermal and ionization energy of the giants envelope, or if we use the $gamma$-algorithm. However, the $gamma$-algorithm predicts local space densities that are 1 to 2 orders of magnitude greater than estimates from observations. In contrast, the canonical energy budget prescription with an initial mass ratio distribution that favours unequal initial mass ratios gives a local space density which is in good agreement with observations, and best reproduces the observed distribution of PCEBs. Finally, all models fail to reproduce the sharp decline for orbital periods, $P_{rmn{orb}} ga 1$ d in the orbital period distribution of observed PCEBs, even if we take into account selection effects against systems with long orbital periods and early spectral-type secondaries.
Context. Period variations have been detected in a number of eclipsing close compact binary subdwarf B stars (sdBs) and these have often been interpreted as caused by circumbinary massive planets or brown dwarfs. Various evolutionary scenarios have b een proposed for these stars, but a definite mechanism remains to be established. Equally puzzling is the formation of these putative circumbinary objects which must have formed either from the remaining post common envelope circumbinary disk or survived its evolution. Aims. In this paper we review the eclipse time variations (ETVs) exhibited by seven such systems and explore if there is conclusive evidence that the ETVs observed over the last two decades can reliably predict the presence of circumbinary bodies. Methods. We report 246 new observations of the seven sdB systems made between 2013 September and 2017 July using a worldwide network of telescopes. We combined our new data with previously published measurements to analyse the ETVs of these systems. Results. Our data shows that period variations cannot be modelled simply on the basis of circumbinary objects. This implies that more complex processes may be taking place in these systems. From eclipse time variations, it has historically been suggested that five of the seven binary systems reported herein had circumbinary objects. Based on our recent observations and analysis only three systems remain serious contenders. We find agreement with other observers that at least a decade of observations is required to establish reliable ephemeris. With longer observational baselines it is quite conceivable that the data will support the circumbinary object hypothesis of these binary systems. Also we generally agree with other observers that larger values of (O-C) residuals are found with secondary companions of spectral type M5/6 or earlier as a result of an Applegate type mechanism
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا