ﻻ يوجد ملخص باللغة العربية
We apply population synthesis techniques to calculate the present day population of post-common envelope binaries (PCEBs) for a range of theoretical models describing the common envelope (CE) phase. Adopting the canonical energy budget approach we consider models where the ejection efficiency, $alpha_{rmn{CE}}$ is either a constant, or a function of the secondary mass. We obtain the envelope binding energy from detailed stellar models of the progenitor primary, with and without the thermal and ionization energy, but we also test a commonly used analytical scaling. We also employ the alternative angular momentum budget approach, known as the $gamma$-algorithm. We find that a constant, global value of $alpha_{rmn{CE}} ga 0.1$ can adequately account for the observed population of PCEBs with late spectral-type secondaries. However, this prescription fails to reproduce IK Pegasi, which has a secondary with spectral type A8. We can account for IK Pegasi if we include thermal and ionization energy of the giants envelope, or if we use the $gamma$-algorithm. However, the $gamma$-algorithm predicts local space densities that are 1 to 2 orders of magnitude greater than estimates from observations. In contrast, the canonical energy budget prescription with an initial mass ratio distribution that favours unequal initial mass ratios gives a local space density which is in good agreement with observations, and best reproduces the observed distribution of PCEBs. Finally, all models fail to reproduce the sharp decline for orbital periods, $P_{rmn{orb}} ga 1$ d in the orbital period distribution of observed PCEBs, even if we take into account selection effects against systems with long orbital periods and early spectral-type secondaries.
Context. An important ingredient in binary evolution is the common-envelope (CE) phase. Although this phase is believed to be responsible for the formation of many close binaries, the process is not well understood. Aims. We investigate the character
We present a catalogue containing 839 candidate post common envelope systems. Common envelope evolution is very important in stellar astrophysics, particularly in the context of very compact and short-period binaries, including cataclysmic variables,
Over half of all observed hot subdwarf B (sdB) stars are found in binaries, and over half of these are found in close configurations with orbital periods of 10$ ,rm{d}$ or less. In order to estimate the companion masses in these predominantly single-
Modelling dust formation in single stars evolving through the carbon-star stage of the asymptotic giant branch (AGB) reproduces well the mid-infrared colours and magnitudes of most of the C-rich sources in the Large Magellanic Cloud (LMC), apart from
Eclipsing time variations (ETVs) are observed in many close binary systems. In particular, for several post-common-envelope binaries (PCEBs) that consist of a white dwarf and a main sequence star, the O-C diagram suggests that real or apparent orbita