ترغب بنشر مسار تعليمي؟ اضغط هنا

Impact of pump wavelength on terahertz emission of a cavity-enhanced spintronic trilayer

64   0   0.0 ( 0 )
 نشر من قبل Rosamund Herapath Miss
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We systematically study the pump-wavelength dependence of terahertz pulse generation in thin-film spintronic THz emitters composed of a ferromagnetic Fe layer between adjacent nonmagnetic W and Pt layers. We find that the efficiency of THz generation is essentially at for excitation by 150 fs pulses with center wavelengths ranging from 900 to 1500 nm, demonstrating that the spin current does not depend strongly on the pump photon energy. We show that the inclusion of dielectric overlayers of TiO2 and SiO2, designed for a particular excitation wavelength, can enhance the terahertz emission by a factor of of up to two in field.



قيم البحث

اقرأ أيضاً

To achieve high efficiency and good performance of spintronic terahertz sources, we propose and corroborate a remnant magnetization method to radiate continuously and stably terahertz pulses from W/CoFeB/Pt magnetic nanofilms without carrying magnets on the transmitters driven by femtosecond laser pulses. We systematically investigate the influences of the pumping central wavelength and find out the optimal wavelength for a fixed sample thickness. We also optimize the incidence angle of the pumping laser and find the emission efficiency is enhanced under oblique incidence. Combing the aforementioned optimizations, we finally obtain comparable radiation efficiency and broadband spectra in W/CoFeB/Pt heterostructures compared with that from 1 mm thick ZnTe nonlinear crystals via optical rectification under the same pumping conditions of 100 fs pulse duration from a Ti:sapphire laser oscillator, which was not previously demonstrated under such pulse duration. We believe our observations not only benefit for a deep insight into the physics of femtosecond spin dynamics, but also help develop novel and cost-effective ultrabroadband spintronic terahertz emitters.
Presented here is the development and demonstration of a tunable cavity-enhanced terahertz frequency-domain optical Hall effect technique. The cavity consists of at least one fixed and one tunable Fabry-Perot resonator. The approach is suitable for e nhancement of the optical signatures produced by the optical Hall effect in semi-transparent conductive layer structures with plane parallel interfaces. The physical principle is the constructive interference of electric field components that undergo multiple optical Hall effect induced polarization rotations upon multiple light passages through the conductive layer stack. Tuning one of the cavity parameters, such as the external cavity thickness, permits shifting of the frequencies of the constructive interference, and enhancement of the optical signatures produced by the optical Hall effect can be obtained over large spectral regions. A cavity-tuning optical stage and gas flow cell are used as examples of instruments that exploit tuning an external cavity to enhance polarization changes in a reflected terahertz beam. Permanent magnets are used to provide the necessary external magnetic field. Conveniently, the highly reflective surface of a permanent magnet can be used to create the tunable external cavity. The signal enhancement allows the extraction of the free charge carrier properties of thin films, and can eliminate the need for expensive super-conducting magnets. Furthermore, the thickness of the external cavity establishes an additional independent measurement condition, similar to, for example, the magnetic field strength, terahertz frequency, and angle of incidence. A high electron mobility transistor structure and epitaxial graphene are studied as examples. We discuss the theoretical background, instrument design, data acquisition, and data analysis procedures.
The ability to manipulate the electric-field vector of broadband terahertz waves is essential for applications of terahertz technologies in many areas, and can open up new possibilities for nonlinear terahertz spectroscopy and coherent control. Here, we propose a novel laser-driven terahertz emitter, consisting of metasurface-patterned magnetic multilayer heterostructures. Such hybrid terahertz emitters can combine the advantages of spintronic emitters for being ultrabroadband, efficient and flexible, as well as those of metasurfaces for the unique capability to manipulate terahertz waves with high precision and degree of freedom. Taking a stripe-patterned metasurface as an example, we demonstrate the generation of broadband terahertz waves with tunable chirality. Based on experimental and theoretical studies, the interplay between the laser-induced spintronic-origin currents and the metasurface-induced transient charges/currents are investigated, revealing the strong influence on the device functionality originated from both the light-matter interactions in individual metasurface units and the dynamic coupling between them. Our work not only offers a flexible, reliable and cost-effective solution for chiral terahertz wave generation and manipulation, but also opens a new pathway to metasurface-tailored spintronic devices for efficient vector-control of electromagnetic waves in the terahertz regime.
61 - Xiaojun Wu , Yang Gao , Yanbin He 2018
We systematically investigate the influence of annealing effect on terahertz (THz) generation from CoFeB based magnetic nanofilms driven by femtosecond laser pulses. Three times enhancement of THz yields are achieved in W/CoFeB through annealing effe ct, and double boosting is obtained in Pt/CoFeB. The mechanism of annealing effect originates from the increase of hot electron mean free path induced by crystallization, which is experimentally corroborated by THz transmission measurement on time-domain spectroscopy. Comparison studies of the thickness dependent THz efficiency after annealing are also implemented, and we eventually conclude that annealing and thickness optimization are of importance for scaling up THz intensity. Our observations not only deepen understanding of the spintronic THz radiation mechanism but also provide normal platform for high speed spintronic opto-electronic devices.
We demonstrate an individual single-walled carbon nanotube light emitter integrated onto a microcavity and a waveguide operating in the telecom wavelength regime. Light emission from the carbon nanotube is enhanced at the cavity resonance and is effi ciently extracted from the waveguide facet. We have transferred carbon nanotubes to a nanobeam cavity with a dry process, ensuring that an individual carbon nanotube is used. The guided light emission from a chirality-identified single carbon nanotube has a narrow linewidth of less than 1.3 nm and an off-resonance rejection of $sim$17 dB. The waveguide-coupled device configuration is compatible with fully integrated on-chip designs and is promising for carbon-nanotube-based photonics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا