ﻻ يوجد ملخص باللغة العربية
We systematically investigate the influence of annealing effect on terahertz (THz) generation from CoFeB based magnetic nanofilms driven by femtosecond laser pulses. Three times enhancement of THz yields are achieved in W/CoFeB through annealing effect, and double boosting is obtained in Pt/CoFeB. The mechanism of annealing effect originates from the increase of hot electron mean free path induced by crystallization, which is experimentally corroborated by THz transmission measurement on time-domain spectroscopy. Comparison studies of the thickness dependent THz efficiency after annealing are also implemented, and we eventually conclude that annealing and thickness optimization are of importance for scaling up THz intensity. Our observations not only deepen understanding of the spintronic THz radiation mechanism but also provide normal platform for high speed spintronic opto-electronic devices.
Antiferromagnets are outstanding candidates for the next generation of spintronic applications, with great potential for downscaling and decreasing power consumption. Recently, the manipulation of bulk properties of antiferromagnets has been realized
Employing electron spin instead of charge to develop spintronic devices holds the merits of low-power consumption in information technologies. Meanwhile, the demand for increasing speed in spintronics beyond current CMOS technology has further trigge
An ultra-broadband THz emitter covering a wide range of frequencies from 0.1 to 10 THz is highly desired for spectroscopy applications. So far, spintronic THz emitters have been proven as one class of efficient THz sources with a broadband spectrum w
Terahertz emission spectroscopy (TES) has recently played an important role in unveiling the spin dynamics at a terahertz (THz) frequency range. So far, ferromagnetic (FM)/nonmagnetic (NM) heterostructures have been intensively studied as THz sources
The spin configuration in the ferromagnetic part during the magnetization reversal plays a crucial role in the exchange bias effect. Through Monte Carlo simulation, the exchange bias effect in ferromagnetic-antiferromagnetic core-shell nanoparticles