ﻻ يوجد ملخص باللغة العربية
We consider $N$ particles in the plane influenced by a general external potential that are subject to the Coulomb interaction in two dimensions at inverse temperature $beta$. At large temperature, when scaling $beta=2c/N$ with some fixed constant $c>0$, in the large-$N$ limit we observe a crossover from Ginibres circular law or its generalization to the density of non-interacting particles at $beta=0$. Using several different methods we derive a partial differential equation of generalized Liouville type for the crossover density. For radially symmetric potentials we present some asymptotic results and give examples for the numerical solution of the crossover density. These findings generalise previous results when the interacting particles are confined to the real line. In that situation we derive an integral equation for the resolvent valid for a general potential and present the analytic solution for the density in case of a Gaussian plus logarithmic potential.
This article will review recent results on dimensional reduction for branched polymers, and discuss implications for critical phenomena. Parisi and Sourlas argued in 1981 that branched polymers fall into the universality class of the Yang-Lee edge in
Using a specially tuned mean-field Bose gas as a reference system, we establish a positive lower bound on the condensate density for continuous Bose systems with superstable two-body interactions and a finite gap in the one-particle excitations spect
We study a renormalization group (RG) map for tensor networks that include two-dimensional lattice spin systems such as the Ising model. Numerical studies of such RG maps have been quite successful at reproducing the known critical behavior. In those
We study a log-gas on a network (a finite, simple graph) confined in a bounded subset of a local field (i.e. R, C, Q_{p} the field of p-adic numbers). In this gas, a log-Coulomb interaction between two charged particles occurs only when the sites of
It is proven that the ground state is unique in the Edwards-Anderson model for almost all continuous random exchange interactions, and any excited state with the overlap less than its maximal value has large energy in dimensions higher than two with