ﻻ يوجد ملخص باللغة العربية
Using a specially tuned mean-field Bose gas as a reference system, we establish a positive lower bound on the condensate density for continuous Bose systems with superstable two-body interactions and a finite gap in the one-particle excitations spectrum, i.e. we prove for the first time standard homogeneous Bose-Einstein condensation for such interacting systems.
We prove rigorously the occurrence of zero-mode Bose-Einstein condensation for a class of continuous homogeneous systems of boson particles with superstable interactions. This is the first example of a translation invariant continuous Bose-system, wh
In the setting of the principle of local equilibrium which asserts that the temperature is a function of the energy levels of the system, we exhibit plenty of steady states describing the condensation of free Bosons which are not in thermal equilibri
The quantitative information on the spectral gaps for the linearized Boltzmann operator is of primary importance on justifying the Boltzmann model and study of relaxation to equilibrium. This work, for the first time, provides numerical evidences on
We study the effects of random scatterers on the ground state of the one-dimensional Lieb-Liniger model of interacting bosons on the unit interval in the Gross-Pitaevskii regime. We prove that Bose Einstein condensation survives even a strong random
In these lecture we explain why limiting distribution function, like the Tracy-Widom distribution, or limit processes, like the Airy_2 process, arise both in random matrices and interacting particle systems. The link is through a common mathematical