ﻻ يوجد ملخص باللغة العربية
We discuss the physical mechanism by which pure vertical bending waves in a stellar disc evolve to form phase space spirals similar to those discovered by Antoja et al. ( arXiv:1804.10196) in Gaia Data Release 2. These spirals were found by projecting Solar Neighbourhood stars onto the $z-v_z$ plane. Faint spirals appear in the number density of stars projected onto the $z-v_z$ plane, which can be explained by a simple model for phase wrapping. More prominent spirals are seen when bins across the $z-v_z$ plane are coloured by median $v_R$ or $v_phi$. We use both toy model and fully self-consistent simulations to show that the spirals develop naturally from vertical bending oscillations of a stellar disc. The underlying physics follows from the observation that the vertical energy of a star (essentially, its radius in the $z-v_z$ plane) correlates with its angular momentum or, alternatively, guiding radius. Moreover, at fixed physical radius, the guiding radius determines the azimuthal velocity. Together, these properties imply the link between in-plane and vertical motion that lead directly to the Gaia spirals. We show that the cubic $R-z$ coupling term in the effective potential is crucial for understanding the morphology of the spirals. This suggests that phase space spirals might be a powerful probe of the Galactic potential. In addition, we argue that self-gravity is necessary to properly model the evolution of the bending waves and their attendant phase space spirals.
Using a single N-body simulation ($N=0.14times 10^9$) we explore the formation, evolution and spatial variation of the phase-space spirals similar to those recently discovered by Antoja et al. in the Milky Way disk, with Gaia DR2. For the first time
We investigate the spatiotemporal structure of simulations of the homogeneous slab and isothermal plane models for the vertical motion in the Galactic disc. We use Dynamic Mode Decomposition (DMD) to compute eigenfunctions of the simulated distributi
Using the method that was developed in the first paper of this series, we measure the vertical gravitational potential of the Galactic disk from the time-varying structure of the phase-space spiral, using data from Gaia as well as supplementary radia
We use $N$-body simulations to investigate the excitation of bending waves in a Milky Way-like disc-bulge-halo system. The dark matter halo consists of a smooth component and a population of subhaloes while the disc is composed of thin and thick comp
We have investigated the distributions of stellar azimuthal and radial velocity components $V_{Phi}$ and $V_{R}$ in the vertical position-velocity plane $Z$-$V_{Z}$ across the Galactic disc of $6.34 lesssim R lesssim 12.34$,kpc and $|Phi| lesssim 7.5