ترغب بنشر مسار تعليمي؟ اضغط هنا

Bending Waves in the Milky Ways disc from halo substructure

217   0   0.0 ( 0 )
 نشر من قبل Matthew Chequers
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use $N$-body simulations to investigate the excitation of bending waves in a Milky Way-like disc-bulge-halo system. The dark matter halo consists of a smooth component and a population of subhaloes while the disc is composed of thin and thick components. Also considered is a control simulation where all of the halo mass is smoothly distributed. We find that bending waves are more vigorously excited in the thin disc than the thick one and that they are strongest in the outer regions of the disc, especially at late times. By way of a Fourier decomposition, we find that the complicated pattern of bending across the disc can be described as a superposition of waves, which concentrate along two branches in the radius-rotational frequency plane. These branches correspond to vertical resonance curves as predicted by a WKB analysis. Bending waves in the simulation with substructure have a higher amplitude than those in the smooth-halo simulation, though the frequency-radius characteristics of the waves in the two simulations are very similar. A cross correlation analysis of vertical displacement and bulk vertical velocity suggests that the waves oscillate largely as simple plane waves. We suggest that the wave-like features in astrometric surveys such as the Second Data Release from textit{Gaia} may be due to long-lived waves of a dynamically active disc rather than, or in addition to, perturbations from a recent satellite-disc encounter.



قيم البحث

اقرأ أيضاً

We present and analyze the positions, distances, and radial velocities for over 4000 blue horizontal-branch (BHB) stars in the Milky Ways halo, drawn from SDSS DR8. We search for position-velocity substructure in these data, a signature of the hierar chical assembly of the stellar halo. Using a cumulative close pair distribution (CPD) as a statistic in the 4-dimensional space of sky position, distance, and velocity, we quantify the presence of position-velocity substructure at high statistical significance among the BHB stars: pairs of BHB stars that are close in position on the sky tend to have more similar distances and radial velocities compared to a random sampling of these overall distributions. We make analogous mock-observations of 11 numerical halo formation simulations, in which the stellar halo is entirely composed of disrupted satellite debris, and find a level of substructure comparable to that seen in the actually observed BHB star sample. This result quantitatively confirms the hierarchical build-up of the stellar halo through a signature in phase (position-velocity) space. In detail, the structure present in the BHB stars is somewhat less prominent than that seen in most simulated halos, quite possibly because BHB stars represent an older sub-population. BHB stars located beyond 20 kpc from the Galactic center exhibit stronger substructure than at $rm r_{gc} < 20$ kpc.
157 - Gregory R. Ruchti 2014
The Milky Way is expected to host an accreted disc of stars and dark matter. This forms as massive >1:10 mergers are preferentially dragged towards the disc plane by dynamical friction and then tidally shredded. The accreted disc likely contributes o nly a tiny fraction of the Milky Ways thin and thick stellar disc. However, it is interesting because: (i) its associated `dark disc has important implications for experiments hoping to detect a dark matter particle in the laboratory; and (ii) the presence or absence of such a disc constrains the merger history of our Galaxy. In this work, we develop a chemo-dynamical template to hunt for the accreted disc. We apply our template to the high-resolution spectroscopic sample from Ruchti et al. (2011), finding at present no evidence for accreted stars. Our results are consistent with a quiescent Milky Way with no >1:10 mergers since the disc formed and a correspondingly light `dark disc. However, we caution that while our method can robustly identify accreted stars, our incomplete stellar sample makes it more challenging to definitively rule them out. Larger unbiased stellar samples will be required for this.
We present a new, high-resolution chronographic (age) map of the Milky Ways halo, based on the inferred ages of ~130,000 field blue horizontal-branch (BHB) stars with photometry from the Sloan Digital Sky Survey. Our map exhibits a strong central con centration of BHB stars with ages greater than 12 Gyr, extending up to ~15 kpc from the Galactic center (reaching close to the solar vicinity), and a decrease in the mean ages of field stars with distance by 1-1.5 Gyr out to ~45-50 kpc, along with an apparent increase of the dispersion of stellar ages, and numerous known (and previously unknown) resolved over-densities and debris streams, including the Sagittarius Stream. These results agree with expectations from modern LambdaCDM cosmological simulations, and support the existence of a dual (inner/outer) halo system, punctuated by the presence of over-densities and debris streams that have not yet completely phase-space mixed.
We investigate the convective stability of two popular types of model of the gas distribution in the hot Galactic halo. We first consider models in which the halo density and temperature decrease exponentially with height above the disk. These halo m odels were created to account for the fact that, on some sight lines, the halos X-ray emission lines and absorption lines yield different temperatures, implying that the halo is non-isothermal. We show that the hot gas in these exponential models is convectively unstable if $gamma<3/2$, where $gamma$ is the ratio of the temperature and density scale heights. Using published measurements of $gamma$ and its uncertainty, we use Bayes Theorem to infer posterior probability distributions for $gamma$, and hence the probability that the halo is convectively unstable for different sight lines. We find that, if these exponential models are good descriptions of the hot halo gas, at least in the first few kiloparsecs from the plane, the hot halo is reasonably likely to be convectively unstable on two of the three sight lines for which scale height information is available. We also consider more extended models of the halo. While isothermal halo models are convectively stable if the density decreases with distance from the Galaxy, a model of an extended adiabatic halo in hydrostatic equilibrium with the Galaxys dark matter is on the boundary between stability and instability. However, we find that radiative cooling may perturb this model in the direction of convective instability. If the Galactic halo is indeed convectively unstable, this would argue in favor of supernova activity in the Galactic disk contributing to the heating the hot halo gas.
Context. Galactic structure studies can be used as a path to constrain the scenario of formation and evolution of our Galaxy. The dependence with the age of stellar population parameters would be linked with the history of star formation and dynamica l evolution. Aims. We aim to investigate the structures of the outer Galaxy, such as the scale length, disc truncation, warp and flare of the thin disc and study their dependence with age by using 2MASS data and a population synthesis model (the so-called Besanc{c}on Galaxy Model). Methods. We have used a genetic algorithm to adjust the parameters on the observed colour-magnitude diagrams at longitudes 80 deg <= l <= 280 deg for |b| <= 5.5 deg. We explored parameter degeneracies and uncertainties. Results. We identify a clear dependence of the thin disc scale length, warp and flare shapes with age. The scale length is found to vary between 3.8 kpc for the youngest to about 2 kpc for the oldest. The warp shows a complex structure, clearly asymmetrical with a node angle changing with age from approximately 165 deg for old stars to 195 deg for young stars. The outer disc is also flaring with a scale height that varies by a factor of two between the solar neighbourhood and a Galactocentric distance of 12 kpc. Conclusions. We conclude that the thin disc scale length is in good agreement with the inside-out formation scenario and that the outer disc is not in dynamical equilibrium. The warp deformation with time may provide some clues to its origin.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا