ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing the Triple Higgs Self-Interaction at the Large Hadron Collider

115   0   0.0 ( 0 )
 نشر من قبل Kyoungchul Kong
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a novel kinematic method to expedite the discovery of the double Higgs ($hh$) production in the $ell^+ell^- b bar{b} + E_T hspace{-0.52cm} big / ~$ final state. We make full use of recently developed kinematic variables, as well as the variables $it Topness$ for the dominant background (top quark pair production) and $it Higgsness$ for the signal. We obtain a significant increase in sensitivity compared to the previous analyses which used sophisticated algorithms like boosted decision trees or neutral networks. The method can be easily generalized to resonant $hh$ production as well as other non-resonant channels.



قيم البحث

اقرأ أيضاً

At a high energy $ep$ collider, such as the Large Hadron-Electron Collider (LHeC) which is being planned at CERN, one can access the $WWgamma$ vertex exclusively in charged current events with a radiated photon, with no interference from the $WWZ$ ve rtex. We find that the azimuthal angle between the jet and the missing momentum in each charged current event is a sensitive probe of anomalous $WWgamma$ couplings, and show that for quite reasonable values of integrated luminosity, the LHeC can extend the discovery reach for these couplings beyond all present experimental bounds.
For the foreseeable future, the exploration of the high-energy frontier will be the domain of the Large Hadron Collider (LHC). Of particular significance will be its high-luminosity upgrade (HL-LHC), which will operate until the mid-2030s. In this en deavour, for the full exploitation of the HL-LHC physics potential an improved understanding of the parton distribution functions (PDFs) of the proton is critical. The HL-LHC program would be uniquely complemented by the proposed Large Hadron electron Collider (LHeC), a high-energy lepton-proton and lepton-nucleus collider based at CERN. In this work, we build on our recent PDF projections for the HL-LHC to assess the constraining power of the LHeC measurements of inclusive and heavy quark structure functions. We find that the impact of the LHeC would be significant, reducing PDF uncertainties by up to an order of magnitude in comparison to state-of-the-art global fits. In comparison to the HL-LHC projections, the PDF constraints from the LHeC are in general more significant for small and intermediate values of the momentum fraction x. At higher values of x, the impact of the LHeC and HL-LHC data is expected to be of a comparable size, with the HL-LHC constraints being more competitive in some cases, and the LHeC ones in others. Our results illustrate the encouraging complementarity of the HL-LHC and the LHeC in terms of charting the quark and gluon structure of the proton.
A radion in a scenario with a warped extra dimension can be lighter than the Higgs boson, even if the Kaluza-Klein excitation modes of the graviton turn out to be in the multi-TeV region. The discovery of such a light radion would be gateway to new p hysics. We show how the two-photon mode of decay can enable us to probe a radion in the mass range 60 - 110 GeV. We take into account the diphoton background, including fragmentation effects, and include cuts designed to suppress the background to the maximum possible extent. Our conclusion is that, with an integrated luminosity of 3000 $rm fb^{-1}$ or less, the next run of the Large Hadron Collider should be able to detect a radion in this mass range, with a significance of 5 standard deviations or more.
70 - I. Turk Cakir 2017
We investigate the anomalous flavour changing neutral current (FCNC) interactions of top quark through the process $e^{-}pto e^{-}W^{pm}q+X$. We calculate the signal and background cross sections in electron proton collisions at Large Hadron electron Collider (LHeC) with a 7 TeV proton beam from the LHC and a new 60 GeV electron beam from energy recovery linac (ERL). We study the relevant background processes including one electron and three jets in the final state. The distributions of the invariant mass of two jets and an additional jet tagged as $b$-jet are used to account signal and background events after the analysis cuts. We find upper bounds on anomalous FCNC couplings $lambda$ of the order of $10^{-2}$ at LHeC for a luminosity projection of $100$ fb$^{-1}$ together with the fast simulation of detector effects. As a matter of interest, we analyze the sensitivity to the couplings $(lambda_{u},lambda_{c})$ and find an enhanced sensitivity to $lambda_{c}$ at the LHeC when compared to the results from the HERA.
83 - U. Baur 2003
We investigate Higgs boson pair production at hadron colliders for Higgs boson masses m_Hleq 140 GeV and rare decay of one of the two Higgs bosons. While in the Standard Model the number of events is quite low at the LHC, a first, albeit not very pre cise, measurement of the Higgs self-coupling is possible in the gg -> HH -> bbar{b}gammagamma channel. A luminosity-upgraded LHC could improve this measurement considerably. A 200 TeV VLHC could make a measurement of the Higgs self-coupling competitive with a next-generation linear collider. In the MSSM we find a significant region with observable Higgs pair production in the small tanbeta regime, where resonant production of two light Higgs bosons might be the only hint at the LHC of an MSSM Higgs sector.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا