ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing Proton Structure at the Large Hadron electron Collider

406   0   0.0 ( 0 )
 نشر من قبل Juan Rojo
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

For the foreseeable future, the exploration of the high-energy frontier will be the domain of the Large Hadron Collider (LHC). Of particular significance will be its high-luminosity upgrade (HL-LHC), which will operate until the mid-2030s. In this endeavour, for the full exploitation of the HL-LHC physics potential an improved understanding of the parton distribution functions (PDFs) of the proton is critical. The HL-LHC program would be uniquely complemented by the proposed Large Hadron electron Collider (LHeC), a high-energy lepton-proton and lepton-nucleus collider based at CERN. In this work, we build on our recent PDF projections for the HL-LHC to assess the constraining power of the LHeC measurements of inclusive and heavy quark structure functions. We find that the impact of the LHeC would be significant, reducing PDF uncertainties by up to an order of magnitude in comparison to state-of-the-art global fits. In comparison to the HL-LHC projections, the PDF constraints from the LHeC are in general more significant for small and intermediate values of the momentum fraction x. At higher values of x, the impact of the LHeC and HL-LHC data is expected to be of a comparable size, with the HL-LHC constraints being more competitive in some cases, and the LHeC ones in others. Our results illustrate the encouraging complementarity of the HL-LHC and the LHeC in terms of charting the quark and gluon structure of the proton.



قيم البحث

اقرأ أيضاً

A radion in a scenario with a warped extra dimension can be lighter than the Higgs boson, even if the Kaluza-Klein excitation modes of the graviton turn out to be in the multi-TeV region. The discovery of such a light radion would be gateway to new p hysics. We show how the two-photon mode of decay can enable us to probe a radion in the mass range 60 - 110 GeV. We take into account the diphoton background, including fragmentation effects, and include cuts designed to suppress the background to the maximum possible extent. Our conclusion is that, with an integrated luminosity of 3000 $rm fb^{-1}$ or less, the next run of the Large Hadron Collider should be able to detect a radion in this mass range, with a significance of 5 standard deviations or more.
70 - I. Turk Cakir 2017
We investigate the anomalous flavour changing neutral current (FCNC) interactions of top quark through the process $e^{-}pto e^{-}W^{pm}q+X$. We calculate the signal and background cross sections in electron proton collisions at Large Hadron electron Collider (LHeC) with a 7 TeV proton beam from the LHC and a new 60 GeV electron beam from energy recovery linac (ERL). We study the relevant background processes including one electron and three jets in the final state. The distributions of the invariant mass of two jets and an additional jet tagged as $b$-jet are used to account signal and background events after the analysis cuts. We find upper bounds on anomalous FCNC couplings $lambda$ of the order of $10^{-2}$ at LHeC for a luminosity projection of $100$ fb$^{-1}$ together with the fast simulation of detector effects. As a matter of interest, we analyze the sensitivity to the couplings $(lambda_{u},lambda_{c})$ and find an enhanced sensitivity to $lambda_{c}$ at the LHeC when compared to the results from the HERA.
We investigate new physics scenarios where systems comprised of a single top quark accompanied by missing transverse energy, dubbed monotops, can be produced at the LHC. Following a simplified model approach, we describe all possible monotop producti on modes via an effective theory and estimate the sensitivity of the LHC, assuming 20 fb$^{-1}$ of collisions at a center-of-mass energy of 8 TeV, to the observation of a monotop state. Considering both leptonic and hadronic top quark decays, we show that large fractions of the parameter space are reachable and that new physics particles with masses ranging up to 1.5 TeV can leave hints within the 2012 LHC dataset, assuming moderate new physics coupling strengths.
We present a new calculation of the energy distribution of high-energy neutrinos from the decay of charm and bottom hadrons produced at the Large Hadron Collider (LHC). In the kinematical region of very forward rapidities, heavy-flavor production and decay is a source of tau neutrinos that leads to thousands of { charged-current} tau neutrino events in a 1 m long, 1 m radius lead neutrino detector at a distance of 480 m from the interaction region. In our computation, next-to-leading order QCD radiative corrections are accounted for in the production cross-sections. Non-perturbative intrinsic-$k_T$ effects are approximated by a simple phenomenological model introducing a Gaussian $k_T$-smearing of the parton distribution functions, which might also mimic perturbative effects due to multiple initial-state soft-gluon emissions. The transition from partonic to hadronic states is described by phenomenological fragmentation functions. To study the effect of various input parameters, theoretical predictions for $D_s^pm$ production are compared with LHCb data on double-differential cross-sections in transverse momentum and rapidity. The uncertainties related to the choice of the input parameter values, ultimately affecting the predictions of the tau neutrino event distributions, are discussed. We consider a 3+1 neutrino mixing scenario to illustrate the potential for a neutrino experiment to constrain the 3+1 parameter space using tau neutrinos and antineutrinos. We find large theoretical uncertainties in the predictions of the neutrino fluxes in the far-forward region. Untangling the effects of tau neutrino oscillations into sterile neutrinos and distinguishing a 3+1 scenario from the standard scenario with three active neutrino flavours, will be challenging due to the large theoretical uncertainties from QCD.
The sensitivities to anomalous quartic photon couplings at the Large Hadron Collider are estimated using diphoton production via photon fusion. The tagging of the protons proves to be a very powerful tool to suppress the background and unprecedented sensitivities down to $6 cdot 10^{-15}$gev$^{-4}$ are obtained, providing a new window on extra dimensions and strongly-interacting composite states in the multi-TeV range. Generic contributions to quartic photon couplings from charged and neutral particles with arbitrary spin are also presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا