ﻻ يوجد ملخص باللغة العربية
We carry out an extensive linear stability analysis of magnetized cylindrical jets in a global framework. Foregoing the commonly invoked force-free limit, we focus on the small-scale, internal instabilities triggered in regions of the jet dominated by a toroidal magnetic field, with a weak vertical field and finite thermal pressure gradient. Such regions are likely to occur far from the jet source and boundaries, and are potential sites of magnetic energy dissipation that is essential to explain the particle acceleration and radiation observed from astrophysical jets. We validate the local stability analysis of Begelman by verifying that the eigenfunctions of the most unstable modes are radially localized. This finding allows us to propose a generic stability criterion in the presence of a weak vertical field. A stronger vertical field with a radial gradient complicates the stability criterion, due to the competition between the destabilizing thermal pressure gradient and stabilizing magnetic pressure gradients. Nevertheless, we argue that the jet interiors generically should be subject to rapidly growing, small-scale instabilities, capable of producing current sheets that lead to dissipation. We identify some new instabilities, not predicted by the local analysis, which are sensitive to the background radial profiles but have smaller growth rates than the local instabilities, and discuss the relevance of our work to the findings of recent numerical jet simulations.
The internal shocks scenario in relativistic jets is used to explain the variability of the blazar emission. Recent studies have shown that the magnetic field significantly alters the shell collision dynamics, producing a variety of spectral energy d
The internal-shocks scenario in relativistic jets has been used to explain the variability of blazars outflow emission. Recent simulations have shown that the magnetic field alters the dynamics of these shocks producing a whole zoo of spectral energy
We have performed two-dimensional special-relativistic magnetohydrodynamic simulations of non-equilibrium over-pressured relativistic jets in cylindrical geometry. Multiple stationary recollimation shock and rarefaction structures are produced along
When a magnetically-dominated super-fast magnetosonic GRB jet leaves the progenitor star the external pressure support may drop and the jet may enter the regime of ballistic expansion during which its magnetic acceleration becomes highly ineffective.
Gamma-ray bursts (GRBs) are powered by relativistic jets that exhibit intermittency over a broad range of timescales - from $ sim $ ms to seconds. Previous numerical studies have shown that hydrodynamic (i.e., unmagnetized) jets that are expelled fro