ترغب بنشر مسار تعليمي؟ اضغط هنا

Numerical study of broadband spectra caused by internal shocks in magnetized relativistic jets of blazars

157   0   0.0 ( 0 )
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The internal-shocks scenario in relativistic jets has been used to explain the variability of blazars outflow emission. Recent simulations have shown that the magnetic field alters the dynamics of these shocks producing a whole zoo of spectral energy density patterns. However, the role played by magnetization in such high-energy emission is still not entirely understood. With the aid of emph{Fermi}s second LAT AGN catalog, a comparison with observations in the $gamma$-ray band was performed, in order to identify the effects of the magnetic field.



قيم البحث

اقرأ أيضاً

The internal shocks scenario in relativistic jets is used to explain the variability of the blazar emission. Recent studies have shown that the magnetic field significantly alters the shell collision dynamics, producing a variety of spectral energy d istributions and light-curves patterns. However, the role played by magnetization in such emission processes is still not entirely understood. In this work we numerically solve the magnetohydodynamic evolution of the magnetized shells collision, and determine the influence of the magnetization on the observed radiation. Our procedure consists in systematically varying the shell Lorentz factor, relative velocity, and viewing angle. The calculations needed to produce the whole broadband spectral energy distributions and light-curves are computationally expensive, and are achieved using a high-performance parallel code.
We have performed two-dimensional special-relativistic magnetohydrodynamic simulations of non-equilibrium over-pressured relativistic jets in cylindrical geometry. Multiple stationary recollimation shock and rarefaction structures are produced along the jet by the nonlinear interaction of shocks and rarefaction waves excited at the interface between the jet and the surrounding ambient medium. Although initially the jet is kinematically dominated, we have considered axial, toroidal and helical magnetic fields to investigate the effects of different magnetic-field topologies and strengths on the recollimation structures. We find that an axial field introduces a larger effective gas-pressure and leads to stronger recollimation shocks and rarefactions, resulting in larger flow variations. The jet boost grows quadratically with the initial magnetic field. On the other hand, a toroidal field leads to weaker recollimation shocks and rarefactions, modifying significantly the jet structure after the first recollimation rarefaction and shock. The jet boost decreases systematically. For a helical field, instead, the behaviour depends on the magnetic pitch, with a phenomenology that ranges between the one seen for axial and toroidal magnetic fields, respectively. In general, however, a helical magnetic field yields a more complex shock and rarefaction substructure close to the inlet that significantly modifies the jet structure. The differences in shock structure resulting from different field configurations and strengths may have observable consequences for disturbances propagating through a stationary recollimation shock.
371 - Maddalena Spada 2000
The development of instabilities leading to the formation of internal shocks is expected in the relativistic outflows of both gamma-ray bursts and blazars. The shocks heat the expanding ejecta, generate a tangled magnetic field and accelerate leptons to relativistic energies. While this scenario has been largely considered for the origin of the spectrum and the fast variability in gamma-ray bursts, here we consider it in the contest of relativistic jets of blazars. We calculate the expected spectra, light curves and time correlations between emission at different wavelengths. The dynamical evolution of the wind explains the minimum distance for dissipation (~10^{17} cm) to avoid $gamma$--$gamma$ collisions and the low radiative efficiency required to transport most of the kinetic energy to the extended radio structures. The internal shock model allows to follow the evolution of changes, both dynamical and radiative, along the entire jet, from the inner part, where the jet becomes radiative and emits at high energies ($gamma$-jet), to the parsec scale, where the emission is mostly in the radio band (radio-jet). We have produced some animations that can be found at http://www.merate.mi.astro.it/~lazzati/3C279/, in which the temporal and spectral informations are shown together.
We carry out an extensive linear stability analysis of magnetized cylindrical jets in a global framework. Foregoing the commonly invoked force-free limit, we focus on the small-scale, internal instabilities triggered in regions of the jet dominated b y a toroidal magnetic field, with a weak vertical field and finite thermal pressure gradient. Such regions are likely to occur far from the jet source and boundaries, and are potential sites of magnetic energy dissipation that is essential to explain the particle acceleration and radiation observed from astrophysical jets. We validate the local stability analysis of Begelman by verifying that the eigenfunctions of the most unstable modes are radially localized. This finding allows us to propose a generic stability criterion in the presence of a weak vertical field. A stronger vertical field with a radial gradient complicates the stability criterion, due to the competition between the destabilizing thermal pressure gradient and stabilizing magnetic pressure gradients. Nevertheless, we argue that the jet interiors generically should be subject to rapidly growing, small-scale instabilities, capable of producing current sheets that lead to dissipation. We identify some new instabilities, not predicted by the local analysis, which are sensitive to the background radial profiles but have smaller growth rates than the local instabilities, and discuss the relevance of our work to the findings of recent numerical jet simulations.
83 - Petar Mimica 2006
(Abridged): We study the collision of magnetized irregularities (shells) in relativistic outflows in order to explain the origin of the generic phenomenology observed in the non-thermal emission of both blazars and gamma-ray bursts. We focus on the i nfluence of the magnetic field on the collision dynamics, and we further investigate how the properties of the observed radiation depend on the strength of the initial magnetic field and on the initial internal energy density of the flow. The collisions of magnetized shells and the radiation resulting from these collisions are calculated using the 1D relativistic magnetohydrodynamics code MRGENESIS. The interaction of the shells with the external medium prior to their collision is also determined using an exact solver for the corresponding 1D relativistic magnetohydrodynamic Riemann problem. Our simulations show that two magnetization parameters - the ratio of magnetic energy density and thermal energy density, alpha_B, and the ratio of magnetic energy density and mass-energy density, sigma - play an important role in the pre-collision phase, while the dynamics of the collision and the properties of the light curves depend mostly on the magnetization parameter sigma. The interaction of the shells with the external medium changes the flow properties at their edges prior to the collision. For sufficiently dense shells moving at large Lorentz factors (simgt 25) these properties depend only on the magnetization parameter sigma. Internal shocks in GRBs may reach maximum efficiencies of conversion of kinetic into thermal energy between 6% and 10%, while in case of blazars, the maximum efficiencies are sim 2%.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا