ترغب بنشر مسار تعليمي؟ اضغط هنا

Human Motion Analysis with Deep Metric Learning

93   0   0.0 ( 0 )
 نشر من قبل Huseyin Coskun
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Effectively measuring the similarity between two human motions is necessary for several computer vision tasks such as gait analysis, person identi- fication and action retrieval. Nevertheless, we believe that traditional approaches such as L2 distance or Dynamic Time Warping based on hand-crafted local pose metrics fail to appropriately capture the semantic relationship across motions and, as such, are not suitable for being employed as metrics within these tasks. This work addresses this limitation by means of a triplet-based deep metric learning specifically tailored to deal with human motion data, in particular with the prob- lem of varying input size and computationally expensive hard negative mining due to motion pair alignment. Specifically, we propose (1) a novel metric learn- ing objective based on a triplet architecture and Maximum Mean Discrepancy; as well as, (2) a novel deep architecture based on attentive recurrent neural networks. One benefit of our objective function is that it enforces a better separation within the learned embedding space of the different motion categories by means of the associated distribution moments. At the same time, our attentive recurrent neural network allows processing varying input sizes to a fixed size of embedding while learning to focus on those motion parts that are semantically distinctive. Our ex- periments on two different datasets demonstrate significant improvements over conventional human motion metrics.



قيم البحث

اقرأ أيضاً

Motion analysis is used in computer vision to understand the behaviour of moving objects in sequences of images. Optimising the interpretation of dynamic biological systems requires accurate and precise motion tracking as well as efficient representa tions of high-dimensional motion trajectories so that these can be used for prediction tasks. Here we use image sequences of the heart, acquired using cardiac magnetic resonance imaging, to create time-resolved three-dimensional segmentations using a fully convolutional network trained on anatomical shape priors. This dense motion model formed the input to a supervised denoising autoencoder (4Dsurvival), which is a hybrid network consisting of an autoencoder that learns a task-specific latent code representation trained on observed outcome data, yielding a latent representation optimised for survival prediction. To handle right-censored survival outcomes, our network used a Cox partial likelihood loss function. In a study of 302 patients the predictive accuracy (quantified by Harrells C-index) was significantly higher (p < .0001) for our model C=0.73 (95$%$ CI: 0.68 - 0.78) than the human benchmark of C=0.59 (95$%$ CI: 0.53 - 0.65). This work demonstrates how a complex computer vision task using high-dimensional medical image data can efficiently predict human survival.
We present a novel hierarchical triplet loss (HTL) capable of automatically collecting informative training samples (triplets) via a defined hierarchical tree that encodes global context information. This allows us to cope with the main limitation of random sampling in training a conventional triplet loss, which is a central issue for deep metric learning. Our main contributions are two-fold. (i) we construct a hierarchical class-level tree where neighboring classes are merged recursively. The hierarchical structure naturally captures the intrinsic data distribution over the whole database. (ii) we formulate the problem of triplet collection by introducing a new violate margin, which is computed dynamically based on the designed hierarchical tree. This allows it to automatically select meaningful hard samples with the guide of global context. It encourages the model to learn more discriminative features from visual similar classes, leading to faster convergence and better performance. Our method is evaluated on the tasks of image retrieval and face recognition, where it outperforms the standard triplet loss substantially by 1%-18%. It achieves new state-of-the-art performance on a number of benchmarks, with much fewer learning iterations.
How do the neural networks distinguish two images? It is of critical importance to understand the matching mechanism of deep models for developing reliable intelligent systems for many risky visual applications such as surveillance and access control . However, most existing deep metric learning methods match the images by comparing feature vectors, which ignores the spatial structure of images and thus lacks interpretability. In this paper, we present a deep interpretable metric learning (DIML) method for more transparent embedding learning. Unlike conventional metric learning methods based on feature vector comparison, we propose a structural matching strategy that explicitly aligns the spatial embeddings by computing an optimal matching flow between feature maps of the two images. Our method enables deep models to learn metrics in a more human-friendly way, where the similarity of two images can be decomposed to several part-wise similarities and their contributions to the overall similarity. Our method is model-agnostic, which can be applied to off-the-shelf backbone networks and metric learning methods. We evaluate our method on three major benchmarks of deep metric learning including CUB200-2011, Cars196, and Stanford Online Products, and achieve substantial improvements over popular metric learning methods with better interpretability. Code is available at https://github.com/wl-zhao/DIML
147 - Chang Liu , Han Yu , Boyang Li 2021
The existence of noisy labels in real-world data negatively impacts the performance of deep learning models. Although much research effort has been devoted to improving robustness to noisy labels in classification tasks, the problem of noisy labels i n deep metric learning (DML) remains open. In this paper, we propose a noise-resistant training technique for DML, which we name Probabilistic Ranking-based Instance Selection with Memory (PRISM). PRISM identifies noisy data in a minibatch using average similarity against image features extracted by several previo
Anticipating human motion depends on two factors: the past motion and the persons intention. While the first factor has been extensively utilized to forecast short sequences of human motion, the second one remains elusive. In this work we approximate a persons intention via a symbolic representation, for example fine-grained action labels such as walking or sitting down. Forecasting a symbolic representation is much easier than forecasting the full body pose with its complex inter-dependencies. However, knowing the future actions makes forecasting human motion easier. We exploit this connection by first anticipating symbolic labels and then generate human motion, conditioned on the human motion input sequence as well as on the forecast labels. This allows the model to anticipate motion changes many steps ahead and adapt the poses accordingly. We achieve state-of-the-art results on short-term as well as on long-term human motion forecasting.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا