ترغب بنشر مسار تعليمي؟ اضغط هنا

The stellar populations of the central region of M31

80   0   0.0 ( 0 )
 نشر من قبل Roberto Saglia
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We continue the analysis of the dataset of our spectroscopic observation campaign of M31, by deriving simple stellar population properties (age metallicity and alpha-elements overabundance) from the measurement of Lick/IDS absorption line indices. We describe their two-dimensional maps taking into account the dust distribution in M31. 80% of the values of our age measurements are larger than 10 Gyr. The central 100 arcsec of M31 are dominated by the stars of the classical bulge of M31. They are old (11-13 Gyr), metal-rich (as high as [Z/H]~0.35 dex) at the center with a negative gradient outwards and enhanced in alpha-elements ([alpha/Fe]~ 0.28+- 0.01 dex). The bar stands out in the metallicity map, where an almost solar value of [Z/H] (~0.02+-0.01 dex) with no gradient is observed along the bar position angle (55.7 deg) out to 600 arcsec from the center. In contrast, no signature of the bar is seen in the age and [alpha/Fe] maps, that are approximately axisymmetric, delivering a mean age and overabundance for the bar and the boxy-peanut bulge of 10-13 Gyr and 0.25-0.27 dex, respectively. The boxy/peanut-bulge has almost solar metallicity (-0.04+- 0.01 dex). The mass-to-light ratio of the three components is approximately constant at M/LV ~ 4.4-4.7 Msol/Lsol. The disk component at larger distances is made of a mixture of stars, as young as 3-4 Gyr, with solar metallicity and smaller M/LV (~3+-0.1 Msol/Lsol). We propose a two-phase formation scenario for the inner region of M31, where most of the stars of the classical bulge come into place together with a proto-disk, where a bar develops and quickly transforms it into a boxy-peanut bulge. Star formation continues in the bulge region, producing stars younger than 10 Gyr, in particular along the bar, enhancing its metallicity. The disk component appears to build up on longer time-scales.



قيم البحث

اقرأ أيضاً

The Andromeda Galaxy (M31) is the nearest grand-design spiral galaxy. Thus far most studies in the radio regime concentrated on the 10 kpc ring. The central region of M31 has significantly different properties than the outer parts: The star formation rate is low, and inclination and position angle are largely different from the outer disk. The existing model of the magnetic field in the radial range 6<=r<=14 kpc is extended to the innermost part r<=0.5 kpc to ultimately achieve a picture of the entire magnetic field in M31. We combined observations taken with the VLA at 3.6 cm and 6.2 cm with data from the Effelsberg 100-m telescope to fill the missing spacings of the synthesis data. The resulting polarization maps were averaged in sectors to analyse the azimuthal behaviour of the polarized intensity (PI), rotation measure (RM), and apparent pitch angle (phi_obs). We developed a simplified 3-D model for the magnetic field in the central region to explain the azimuthal behaviour of the three observables. Our 3-D model of a quadrupolar or dipolar dynamo field can explain the observed patterns in PI, RM, and phi_obs, while a 2-D configuration is not sufficient to explain the azimuthal behaviour. In addition and independent of our model, the RM pattern shows that the spiral magnetic field in the inner 0.5 kpc points outward, which is opposite to that in the outer disk, and has a pitch angle of about 33 degrees, which is much larger than that of 8-19 degrees in the outer disk. The physical conditions in the central region differ significantly from those in the 10 kpc ring. In addition, the orientation of this region with respect to the outer disk is completely different. The opposite magnetic field directions suggest that the central region is decoupled from the outer disk, and we propose that an independent dynamo is active in the central region.
118 - S.I. Loubser 2014
We present detailed, high spatial and spectral resolution, long-slit observations of four central cluster galaxies (Abell 0085, 0133, 0644 and Ophiuchus) recently obtained on the Southern African Large Telescope (SALT). Our sample consists of central cluster galaxies (CCGs) with previously-observed Halpha-filaments, and have existing data from the X-ray to radio wavelength regimes available. Here, we present the detailed optical data over a broad wavelength range to probe the spatially-resolved kinematics and stellar populations of the stars. We use the Pegase.HR model with the ELODIE v3.1 stellar library to determine the star formation histories of the galaxies using full spectrum fitting. We perform single stellar population (SSP) as well as composite stellar population (CSP) fits to account for more complex star formation histories. Monte-Carlo simulations and chi 2-maps are used to check the reliability of the solutions. This, combined with the other multiwavelength data, will form a complete view of the different phases (hot and cold gas and stars) and how they interact in the processes of star formation and feedback detected in central galaxies in cooling flow clusters, as well as the influence of the host cluster. We find small, young stellar components in at least three of the four galaxies, even though two of the three host clusters have zero spectrally-derived mass deposition rates from X-ray observations.
We show for the first time, that a fully cosmological hydrodynamical simulation can reproduce key properties of the innermost region of the Milky Way. Our high resolution simulation matches the profile and kinematics of the Milky Ways boxy/peanut-sha ped bulge, and hence we can use it to reconstruct and understand the bulge assembly. In particular, the age dependence of the X-shape morphology of the simulated bulge parallels the observed metallicity dependent split in the red clump stars of the inner Galaxy. We use this feature to derive an observational metric that allows us to quantify when the bulge formed from the disk. The metric we propose can be employed with upcoming survey data to constrain the age of the Milky Way bar. From the split in stellar counts we estimate the formation of the 4~kpc scale bar in the simulation to have happened $t^{rm bar}_{rm form}sim8^{+2}_{-2}$ Gyr ago, in good agreement with conventional methods to measure bar formation in simulations. We test the prospects for observationally differentiating the stars that belong to the bulge/bar compared to the surrounding disk, and find that the inner disk and bulge are practically indistinguishable in both chemistry and ages.
We study the stellar populations of the brightest group galaxies (BGGs) in groups with different dynamical states, using GAMA survey data. We use two independent, luminosity dependent indicators to probe the relaxedness of their groups; the magnitude gap between the two most luminous galaxies ($Delta M_{12}$), and offset between BGG and the luminosity center ($D_{offset}$) of the group. Combined, these two indicators were previously found useful for identifying relaxed and unrelaxed groups. We find that the BGGs of unrelaxed groups have significantly bluer NUV-r colours than in relaxed groups. This is also true at the fixed sersic index. We find the bluer colours cannot be explained away by differing dust fraction, suggesting there are real differences in their stellar populations. SFRs derived from SED-fitting tend to be higher in unrelaxed systems. This is in part because of a greater fraction of BGGs with non-elliptical morphology, but also because unrelaxed systems have larger numbers of mergers, some of which may bring fuel for star formation. The SED-fitted stellar metallicities of BGGs in unrelaxed systems also tend to be higher by around 0.05 dex, perhaps because their building blocks were more massive. We find that the $Delta M_{12}$ parameter is the most important parameter behind the observed differences in the relaxed/unrelaxed groups, in contrast with the previous study of Trevisan et al. (2017). We also find that groups selected to be unrelaxed using our criteria tend to have higher velocity offsets between the BGG and their group.
A galaxys stellar mass-to-light ratio ($M_star/L$) is a useful tool for converting luminosity to stellar mass ($M_star$). However, the practical utility of $M_star/L$ inferred from stellar population synthesis (SPS) models is limited by mismatches be tween the real and assumed models for star formation history (SFH) and dust geometry, both of which vary within galaxies. Here, we measure spatial variations in $M_star/L$ and their dependence on color, star formation history, and dust across the disk of M31, using a map of $M^mathrm{CMD}_star$ derived from color-magnitude diagrams of resolved stars in the Panchromatic Hubble Andromeda Treasury (PHAT) survey. First, we find comparable scatter in $M_star/L$ for the optical and mid-IR, contrary to the common idea that $M_star/L$ is less variable in the IR. Second, we confirm that $M_star/L$ is correlated with color for both the optical and mid-IR and report color vs. $M_star/L$ relations (CMLRs) in M31 for filters used in the Sloan Digital Sky Survey (SDSS) and Widefield Infrared Survey Explorer (WISE). Third, we show that the CMLR residuals correlate with recent SFH, such that quiescent regions are offset to higher $M_star/L$ than star-forming regions at a fixed color. The mid-IR CMLR, however, is not linear due to the high scatter of $M_star/L$ in star-forming regions. Finally, we find a flatter optical CMLR than any SPS-based CMLRs in the literature. We show this is an effect of dust geometry, which is typically neglected but should be accounted for when using optical data to map $M_star/L$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا