ﻻ يوجد ملخص باللغة العربية
The Andromeda Galaxy (M31) is the nearest grand-design spiral galaxy. Thus far most studies in the radio regime concentrated on the 10 kpc ring. The central region of M31 has significantly different properties than the outer parts: The star formation rate is low, and inclination and position angle are largely different from the outer disk. The existing model of the magnetic field in the radial range 6<=r<=14 kpc is extended to the innermost part r<=0.5 kpc to ultimately achieve a picture of the entire magnetic field in M31. We combined observations taken with the VLA at 3.6 cm and 6.2 cm with data from the Effelsberg 100-m telescope to fill the missing spacings of the synthesis data. The resulting polarization maps were averaged in sectors to analyse the azimuthal behaviour of the polarized intensity (PI), rotation measure (RM), and apparent pitch angle (phi_obs). We developed a simplified 3-D model for the magnetic field in the central region to explain the azimuthal behaviour of the three observables. Our 3-D model of a quadrupolar or dipolar dynamo field can explain the observed patterns in PI, RM, and phi_obs, while a 2-D configuration is not sufficient to explain the azimuthal behaviour. In addition and independent of our model, the RM pattern shows that the spiral magnetic field in the inner 0.5 kpc points outward, which is opposite to that in the outer disk, and has a pitch angle of about 33 degrees, which is much larger than that of 8-19 degrees in the outer disk. The physical conditions in the central region differ significantly from those in the 10 kpc ring. In addition, the orientation of this region with respect to the outer disk is completely different. The opposite magnetic field directions suggest that the central region is decoupled from the outer disk, and we propose that an independent dynamo is active in the central region.
We continue the analysis of the dataset of our spectroscopic observation campaign of M31, by deriving simple stellar population properties (age metallicity and alpha-elements overabundance) from the measurement of Lick/IDS absorption line indices. We
We present a NIR polarimetric map of the 1deg by 1deg region toward the Galactic center. Comparing Stokes parameters between highly reddened stars and less reddened ones, we have obtained a polarization originating from magnetically aligned dust grai
Images obtained with NIRI on the Gemini North telescope are used to investigate the photometric properties of the central regions of M31 in the 3 - 5 micron wavelength range. The light distribution in the central arcsecond differs from what is seen i
A debated topic in star formation theory is the role of magnetic fields during the protostellar phase of high-mass stars. It is still unclear how magnetic fields influence the formation and dynamics of massive disks and outflows. Most current informa
Measuring interstellar magnetic fields is extremely important for understanding their role in different evolutionary stages of interstellar clouds and of star formation. However, detecting the weak field is observationally challenging. We present mea