ترغب بنشر مسار تعليمي؟ اضغط هنا

Kondo Breakdown via Fractionalization in a Frustrated Kondo Lattice Model

91   0   0.0 ( 0 )
 نشر من قبل Johannes Hofmann S
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider Dirac electrons on the honeycomb lattice Kondo coupled to spin-1/2 degrees of freedom on the kagome lattice. The interactions between the spins are chosen along the lines of the Balents-Fisher-Girvin model that is known to host a $mathbb{Z}_2$ spin liquid and a ferromagnetic phase. The model is amenable to sign free auxiliary field quantum Monte Carlo simulations. While in the ferromagnetic phase the Dirac electrons acquire a gap, they remain massless in the $mathbb{Z}_2$ spin liquid phase due to the breakdown of Kondo screening. Since our model has an odd number of spins per unit cell, this phase is a non-Fermi liquid that violates the conventional Luttinger theorem which relates the Fermi surface volume to the particle density in a Fermi liquid. This non-Fermi liquid is a specific realization of the so called fractionalized Fermi liquid proposed in the context of heavy fermions. We probe the Kondo breakdown in this non-Fermi liquid phase via conventional observables such as the spectral function, and also by studying the mutual information between the electrons and the spins.



قيم البحث

اقرأ أيضاً

Motivated by the observation of light surface states in SmB6, we examine the effects of surface Kondo breakdown in topological Kondo insulators. We present both numerical and analytic results which show that the decoupling of the localized moments at the surface disturbs the compensation between light and heavy electrons and dopes the Dirac cone. Dispersion of these uncompensated surface states are dominated by inter-site hopping, which leads to a much lighter quasiparticles. These surface states are also highly durable against the effects of surface magnetism and decreasing thickness of the sample.
Muon spin relaxation experiments have been performed in the pyrochlore iridate Pr_2Ir_2O_7 for temperatures in the range 0.025-250 K. Kubo-Toyabe relaxation functions are observed up to > 200 K, indicating static magnetism over this temperature range . The T -> 0 static muon spin relaxation rate Delta(0) ~ 8 mus^-1 implies a weak quasistatic moment (~0.1 mu_B). The temperature dependence of Delta is highly non-mean-field-like, decreasing smoothly by orders of magnitude but remaining nonzero below ~150 K. The data rule out ordering of the full Pr^3+ CEF ground-state moment (3.0 mu_B) down to 0.025 K. The weak static magnetism is most likely due to hyperfine-enhanced ^141Pr nuclear magnetism. The dynamic relaxation rate lambda increases markedly below ~20 K, probably due to slowing down of spin fluctuations in the spin-liquid state. At low temperatures lambda is strong and temperature-independent, indicative of a high density of low-lying spin excitations as is common in frustrated antiferromagnets.
Motivated by recent experiments on magnetically frustrated heavy fermion metals, we theoretically study the phase diagram of the Kondo lattice model with a nonmagnetic valence bond solid ground state on a ladder. A similar physical setting may be nat urally occurring in YbAl$_3$C$_3$, CeAgBi$_2$, and TmB$_4$ compounds. In the insulating limit, the application of a magnetic field drives a quantum phase transition to an easy-plane antiferromagnet, which is described by a Bose-Einstein condensation of magnons. Using a combination of field theoretical techniques and density matrix renormalization group calculations we demonstrate that in one dimension this transition is stable in the presence of a metallic Fermi sea and its universality class in the local magnetic response is unaffected by the itinerant gapless fermions. Moreover, we find that fluctuations about the valence bond solid ground state can mediate an attractive interaction that drives unconventional superconducting correlations. We discuss the extensions of our findings to higher dimensions and argue that, depending on the filling of conduction electrons, the magnon Bose-Einstein condensation transition can remain stable in a metal also in dimensions two and three.
In the first step, experiments on a single cerium or ytterbium Kondo impurity reveal the importance of the Kondo temperature by comparison to other type of couplings like the hyperfine interaction, the crystal field and the intersite coupling. The ex tension to a lattice is discussed. Emphasis is given on the fact that the occupation number $n_f$ of the trivalent configuration may be the implicit key variable even for the Kondo lattice. Three $(P, H, T)$ phase diagrams are discussed: CeRu$_2$Si$_2$, CeRhIn$_5$ and SmS.
The magnetic correlations, local moments and the susceptibility in the correlated 2D Kondo lattice model at half filling are investigated. We calculate their systematic dependence on the control parameters J_K/t and U/t. An unbiased and reliable exac t diagonalization (ED) approach for ground state properties as well as the finite temperature Lanczos method (FTLM) for specific heat and the uniform susceptibility are employed for small tiles on the square lattice. They lead to two major results: Firstly we show that the screened local moment exhibits non-monotonic behavior as a function of U for weak Kondo coupling J_K. Secondly the temperature dependence of the susceptibility obtained from FTLM allows to extract the dependence of the characteristic Kondo temperature scale T* on the correlation strength U. A monotonic increase of T* for small U is found resolving the ambiguity from earlier investigations. In the large U limit the model is equivalent to the 2D Kondo necklace model with two types of localized spins. In this limit the numerical results can be compared to those of the analytical bond operator method in mean field treatment and excellent agreement for the total paramagnetic moment is found, supporting the reliability of both methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا