ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnon Bose-Einstein Condensation and Superconductivity in a Frustrated Kondo Lattice

245   0   0.0 ( 0 )
 نشر من قبل Pavel Volkov Andreevich
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Motivated by recent experiments on magnetically frustrated heavy fermion metals, we theoretically study the phase diagram of the Kondo lattice model with a nonmagnetic valence bond solid ground state on a ladder. A similar physical setting may be naturally occurring in YbAl$_3$C$_3$, CeAgBi$_2$, and TmB$_4$ compounds. In the insulating limit, the application of a magnetic field drives a quantum phase transition to an easy-plane antiferromagnet, which is described by a Bose-Einstein condensation of magnons. Using a combination of field theoretical techniques and density matrix renormalization group calculations we demonstrate that in one dimension this transition is stable in the presence of a metallic Fermi sea and its universality class in the local magnetic response is unaffected by the itinerant gapless fermions. Moreover, we find that fluctuations about the valence bond solid ground state can mediate an attractive interaction that drives unconventional superconducting correlations. We discuss the extensions of our findings to higher dimensions and argue that, depending on the filling of conduction electrons, the magnon Bose-Einstein condensation transition can remain stable in a metal also in dimensions two and three.



قيم البحث

اقرأ أيضاً

The recent experimental condensation of ultracold atoms in a triangular optical lattice with negative effective tunneling energies paves the way to study frustrated systems in a controlled environment. Here, we explore the critical behavior of the ch iral phase transition in such a frustrated lattice in three dimensions. We represent the low-energy action of the lattice system as a two-component Bose gas corresponding to the two minima of the dispersion. The contact repulsion between the bosons separates into intra- and inter-component interactions, referred to as $V_{0}$ and $V_{12}$, respectively. We first employ a Huang-Yang-Luttinger approximation of the free energy. For $V_{12}/V_{0} = 2$, which corresponds to the bare interaction, this approach suggests a first order phase transition, at which both the U$(1)$ symmetry of condensation and the $mathbb{Z}_2$ symmetry of the emergent chiral order are broken simultaneously. Furthermore, we perform a renormalization group calculation at one-loop order. We demonstrate that the coupling regime $0<V_{12}/V_0leq1$ shares the critical behavior of the Heisenberg fixed point at $V_{12}/V_{0}=1$. For $V_{12}/V_0>1$ we show that $V_{0}$ flows to a negative value, while $V_{12}$ increases and remains positive. This results in a breakdown of the effective quartic field theory due to a cubic anisotropy, and again suggests a discontinuous phase transition.
Quantum phase transition at the saturation field is studied for a class of frustrated quantum antiferromagnets. The considered models include (i) the $J_1$-$J_2$ frustrated square-lattice antiferromagnet with $J_2={1/2}J_1$ and (ii) the nearest-neigh bor Heisenberg antiferromagnet on a face centered cubic lattice. In the fully saturated phase the magnon spectra for the two models have lines of degenerate minima. Transition into partially magnetized state is treated via a mapping to a dilute gas of hard core bosons and by complementary spin-wave calculations. Momentum dependence of the exact four-point boson vertex removes the degeneracy of the single-particle excitation spectra and selects the ordering wave-vectors at $(pi,pi)$ and $(pi,0,0)$ for the two models. The asymptotic behavior of the magnetization curve differs significantly from that of conventional antiferromagnet in $d$-spatial dimensions. We predict a unique form for the magnetization curve $Delta M=S-Msimeq mu^{(d-1)/2}(logmu)^{(d-1)}$, where $mu$ is a distance from the quantum critical point.
Magnetic fluctuations induced by geometric frustration of local Ir-spins disturb the formation of long range magnetic order in the family of pyrochlore iridates, R$_{2}$Ir$_{2}$O$_{7}$ (R = lanthanide)$^{1}$. As a consequence, Pr$_{2}$Ir$_{2}$O$_{7}$ lies at a tuning-free antiferromagnetic-to-paramagnetic quantum critical point and exhibits a diverse array of complex phenomena including Kondo effect, biquadratic band structure, metallic spin-liquid (MSL), and anomalous Hall effect$^{2-5}$. Using spectroscopic imaging with the scanning tunneling microscope, complemented with machine learning K-means clustering analysis, density functional theory, and theoretical modeling, we probe the local electronic states in single crystal of Pr$_{2}$Ir$_{2}$O$_{7}$ and discover an electronic phase separation. Nanoscale regions with a well-defined Kondo resonance are interweaved with a non-magnetic metallic phase with Kondo-destruction. Remarkably, the spatial nanoscale patterns display a correlation-driven fractal geometry with power-law behavior extended over two and a half decades, consistent with being in proximity to a critical point. Our discovery reveals a new nanoscale tuning route, viz. using a spatial variation of the electronic potential as a means of adjusting the balance between Kondo entanglement and geometric frustration.
In triangular lattice structures, spatial anisotropy and frustration can lead to rich equilibrium phase diagrams with regions containing complex, highly entangled states of matter. In this work we study the driven two-rung triangular Hubbard model an d evolve these states out of equilibrium, observing how the interplay between the driving and the initial state unexpectedly shuts down the particle-hole excitation pathway. This restriction, which symmetry arguments fail to predict, dictates the transient dynamics of the system, causing the available particle-hole degrees of freedom to manifest uniform long-range order. We discuss implications of our results for a recent experiment on photo-induced superconductivity in ${rm kappa - (BEDT-TTF)_{2}Cu[N(CN)_{2}]Br}$ molecules.
Evolution of an overpopulated gas of magnons to a Bose-Einstein condensate and excitation of a magnon supercurrent, propelled by a phase gradient in the condensate wave function, can be observed at room-temperature by means of the Brillouin light sca ttering spectroscopy in an yttrium iron garnet material. We study these phenomena in a wide range of external magnetic fields in order to understand their properties when externally pumped magnons are transferred towards the condensed state via two distinct channels: A multistage Kolmogorov-Zakharov cascade of the weak-wave turbulence or a one-step kinetic-instability process. Our main result is that opening the kinetic instability channel leads to the formation of a much denser magnon condensate and to a stronger magnon supercurrent compared to the cascade mechanism alone.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا