ترغب بنشر مسار تعليمي؟ اضغط هنا

Chaos synchronization of canonically and Lie-algebraically deformed Henon-Heiles systems by active control

73   0   0.0 ( 0 )
 نشر من قبل Marcin Daszkiewicz
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, there has been provided two chaotic models based on the twist-deformation of classical Henon-Heiles system. First of them has been constructed on the well-known, canonical space-time noncommutativity, while the second one on the Lie-algebraically type of quantum space, with two spatial directions commuting to classical time. In this article, we find the direct link between mentioned above systems, by synchronization both of them in the framework of active control method. Particularly, we derive at the canonical phase-space level the corresponding active controllers as well as we perform (as an example) the numerical synchronization of analyzed models.



قيم البحث

اقرأ أيضاً

59 - Marcin Daszkiewicz 2017
In this article we synchronize by active control method all 19 identical Sprott systems provided in paper [10]. Particularly, we find the corresponding active controllers as well as we perform (as an example) the numerical synchronization of two Sprott-A models.
55 - Marcin Daszkiewicz 2016
In this article we provide canonically deformed classical Henon-Heiles system. Further we demonstrate that for proper value of deformation parameter $theta$ there appears chaos in the model.
70 - Marcin Daszkiewicz 2017
In this article we provide the Henon-Heiles system defined on Lie-algebraically deformed nonrelativistic space-time with the commutator of two spatial directions proportional to time. Particularly, we demonstrate that in such a model the total energy is not conserved and for this reason the role of control parameter is taken by the initial energy value $E_{0,{rm tot}} = E_{{rm tot}}(t=0)$. Besides, we show that in contrast with the commutative case, for chosen values of deformation parameter $kappa$, there appears chaos in the system for initial total energies $E_{0,{rm tot}}$ below the threshold $E_{0,{rm th}} = 1/6$.
We extend the concept of generalized synchronization of chaos, a phenomenon that occurs in driven dynamical systems, to the context of autonomous spatiotemporal systems. It means a situation where the chaotic state variables in an autonomous system c an be synchronized to each other but not to a coupling function defined from them. The form of the coupling function is not crucial; it may not depend on all the state variables nor it needs to be active for all times for achieving generalized synchronization. The procedure is based on the analogy between a response map subject to an external drive acting with a probability p and an autonomous system of coupled maps where a global interaction between the maps takes place with this same probability. It is shown that, under some circumstances, the conditions for stability of generalized synchronized states are equivalent in both types of systems. Our results reveal the existence of similar minimal conditions for the emergence of generalized synchronization of chaos in driven and in autonomous spatiotemporal systems.
59 - M. Brack , J. Kaidel , P. Winkler 2005
We discuss the coarse-grained level density of the Henon-Heiles system above the barrier energy, where the system is nearly chaotic. We use periodic orbit theory to approximate its oscillating part semiclassically via Gutzwillers semiclassical trace formula (extended by uniform approximations for the contributions of bifurcating orbits). Including only a few stable and unstable orbits, we reproduce the quantum-mechanical density of states very accurately. We also present a perturbative calculation of the stabilities of two infinite series of orbits (R$_n$ and L$_m$), emanating from the shortest librating straight-line orbit (A) in a bifurcation cascade just below the barrier, which at the barrier have two common asymptotic Lyapunov exponents $chi_{rm R}$ and $chi_{rm L}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا