ﻻ يوجد ملخص باللغة العربية
In this article we provide the Henon-Heiles system defined on Lie-algebraically deformed nonrelativistic space-time with the commutator of two spatial directions proportional to time. Particularly, we demonstrate that in such a model the total energy is not conserved and for this reason the role of control parameter is taken by the initial energy value $E_{0,{rm tot}} = E_{{rm tot}}(t=0)$. Besides, we show that in contrast with the commutative case, for chosen values of deformation parameter $kappa$, there appears chaos in the system for initial total energies $E_{0,{rm tot}}$ below the threshold $E_{0,{rm th}} = 1/6$.
In this article we provide canonically deformed classical Henon-Heiles system. Further we demonstrate that for proper value of deformation parameter $theta$ there appears chaos in the model.
Recently, there has been provided two chaotic models based on the twist-deformation of classical Henon-Heiles system. First of them has been constructed on the well-known, canonical space-time noncommutativity, while the second one on the Lie-algebra
In this article we discus the energy-momentum conservation principle for two-particle system in the case of canonically and Lie-algebraically twist-deformed Galilei Hopf algebra. Particularly, we provide consistent with the coproducts energy and mome
We investigate the resonance spectrum of the Henon-Heiles potential up to twice the barrier energy. The quantum spectrum is obtained by the method of complex coordinate rotation. We use periodic orbit theory to approximate the oscillating part of the
We discuss the coarse-grained level density of the Henon-Heiles system above the barrier energy, where the system is nearly chaotic. We use periodic orbit theory to approximate its oscillating part semiclassically via Gutzwillers semiclassical trace