ﻻ يوجد ملخص باللغة العربية
X-ray absorption fine structure (XAFS) and x-ray emission spectroscopy (XES) are advanced x-ray spectroscopies that impact a wide range of disciplines. However, unlike the majority of other spectroscopic methods, XAFS and XES are accompanied by an unusual access model, wherein; the dominant use of the technique is for premier research studies at world-class facilities, i.e., synchrotron x-ray light sources. In this paper we report the design and performance of an improved spectrometer XAFS and XES based on the general conceptual design of Seidler, et al., Rev. Sci. Instrum. 2014. New developments include reduced mechanical degrees of freedom, much-increased flux, and a wider Bragg angle range to enable extended x-ray absorption fine structure (EXAFS) for the first time with this type of modern laboratory XAFS configuration. This instrument enables a new class of routine applications that are incompatible with the mission and access model of the synchrotron light sources. To illustrate this, we provide numerous examples of x-ray absorption near edge structure (XANES), EXAFS, and XES results for a variety of problems and energy ranges. Highlights include XAFS and XES measurements of battery electrode materials, EXAFS of Ni and V with full modeling of results to validate monochromator performance, valence-to-core XES for 3d transition metal compounds, and uranium XANES and XES for different oxidation states. Taken en masse, these results further support the growing perspective that modern laboratory-based XAFS and XES have the potential to develop a new branch of analytical chemistry.
Material and product life cycles are based on complex value chains of technology-specific elements. Resource strategy aspects of essential and strategic raw materials have a direct impact on applications of new functionalized materials or the develop
Mutiferroics are a novel class of next generation multifunctional materials, which display simultaneous magnetic spin, electric dipole, and ferroelastic ordering, and have drawn increasing interest due to their multi-functionality for a variety of de
We combine spin polarised density functional theory and thermodynamic mean field theory to describe the phase transitions of antiperovskite manganese nitrides. We find that the inclusion of the localized spin contribution to the entropy, evaluated th
Unless we change direction, we are likely to wind up where we are headed. (Ancient Chinese proverb)
Topology, a mathematical concept, has recently become a popular and truly transdisciplinary topic encompassing condensed matter physics, solid state chemistry, and materials science. Since there is a direct connection between real space, namely atoms