ﻻ يوجد ملخص باللغة العربية
Topology, a mathematical concept, has recently become a popular and truly transdisciplinary topic encompassing condensed matter physics, solid state chemistry, and materials science. Since there is a direct connection between real space, namely atoms, valence electrons, bonds and orbitals, and reciprocal space, namely bands and Fermi surfaces, via symmetry and topology, classifying topological materials within a single-particle picture is possible. Currently, most materials are classified as trivial insulators, semimetals and metals, or as topological insulators, Dirac and Weyl nodal-line semimetals, and topological metals. The key ingredients for topology are: certain symmetries, the inert pair effect of the outer electrons leading to inversion of the conduction and valence bands, and spin-orbit coupling. This review presents the topological concepts related to solids from the viewpoint of a solid-state chemist, summarizes techniques for growing single crystals, and describes basic physical property measurement techniques to characterize topological materials beyond their structure and provide examples of such materials. Finally, a brief outlook on the impact of topology in other areas of chemistry is provided at the end of the article.
The recently developed theory of topological quantum chemistry (TQC) has built a close connection between band representations in momentum space and orbital characters in real space. It provides an effective way to diagnose topological materials, lea
The past decades apparent success in predicting and experimentally discovering distinct classes of topological insulators (TIs) and semimetals masks a fundamental shortcoming: out of 200,000 stoichiometric compounds extant in material databases, only
We present a review of topological electronic materials discovery in crystalline solids from the prediction of the first 2D and 3D topological insulators (TIs) through the recently introduced methods that have facilitated large-scale searches for top
Over the last 100 years, the group-theoretic characterization of crystalline solids has provided the foundational language for diverse problems in physics and chemistry. There exist two classes of crystalline solids: nonmagnetic crystals left invaria
Searching for topological insulators/superconductors is one central subject in recent condensed matter physics. As a theoretical aspect, various classification methods of symmetry-protected topological phases have been developed, where the topology o