ﻻ يوجد ملخص باللغة العربية
We use a Magnus approximation at the level of the equations of motion for a harmonic system with a time-dependent frequency, to find an expansion for its in-out effective action, and a unitary expansion for the Bogoliubov transformation between in and out states. The dissipative effects derived therefrom are compared with the ones obtained from perturbation theory in powers of the time-dependent piece in the frequency, and with those derived using multiple scale analysis in systems with parametric resonance. We also apply the Magnus expansion to the in-in effective action, to construct reality and causal equations of motion for the external system. We show that the nonlocal equations of motion can be written in terms of a retarded Fourier transform evaluated at the resonant frequency.
Using Schwinger Variational Principle we solve the problem of quantum harmonic oscillator with time dependent frequency. Here, we do not take the usual approach which implicitly assumes an adiabatic behavior for the frequency. Instead, we propose a n
We derive explicitly the thermal state of the two coupled harmonic oscillator system when the spring and coupling constants are arbitrarily time-dependent. In particular, we focus on the case of sudden change of frequencies. In this case we compute p
We develop a Magnus formalism for periodically driven systems which provides an expansion both in the driving term and the inverse driving frequency, applicable to isolated and dissipative systems. We derive explicit formulas for a driving term with
In the context of the de Broglie-Bohm pilot wave theory, numerical simulations for simple systems have shown that states that are initially out of quantum equilibrium - thus violating the Born rule - usually relax over time to the expected $|psi|^2$
In this work, we provide an answer to the question: how sudden or adiabatic is a change in the frequency of a quantum harmonic oscillator (HO)? To do this, we investigate the behavior of a HO, initially in its fundamental state, by making a frequency