ﻻ يوجد ملخص باللغة العربية
In this work, we provide an answer to the question: how sudden or adiabatic is a change in the frequency of a quantum harmonic oscillator (HO)? To do this, we investigate the behavior of a HO, initially in its fundamental state, by making a frequency transition that we can control how fast it occurs. The resulting state of the system is shown to be a vacuum squeezed state in two bases related by Bogoliubov transformations. We characterize the time evolution of the squeezing parameter in both bases and discuss its relation with adiabaticity by changing the rate of the frequency transition from sudden to adiabatic. Finally, we obtain an analytical approximate expression that relates squeezing to the transition rate as well as the initial and final frequencies. Our results shed some light on subtleties and common inaccuracies in the literature related to the interpretation of the adiabatic theorem for this system.
Using Schwinger Variational Principle we solve the problem of quantum harmonic oscillator with time dependent frequency. Here, we do not take the usual approach which implicitly assumes an adiabatic behavior for the frequency. Instead, we propose a n
Using operator ordering techniques based on BCH-like relations of the su(1,1) Lie algebra and a time-splitting approach,we present an alternative method of solving the dynamics of a time-dependent quantum harmonic oscillator for any initial state. We
We show how a single trapped ion may be used to test a variety of important physical models realized as time-dependent harmonic oscillators. The ion itself functions as its own motional detector through laser-induced electronic transitions. Alsing et
Uncertainties $(Delta x)^2$ and $(Delta p)^2$ are analytically derived in an $N$-coupled harmonic oscillator system when spring and coupling constants are arbitrarily time-dependent and each oscillator is in an arbitrary excited state. When $N = 2$,
The solution of the Feinberg-Horodecki (FH) equation for a time-dependent mass (TDM) harmonic oscillator quantum system is studied. A certain interaction is applied to a mass to provide a particular spectrum of stationary energies. The related spectr