ﻻ يوجد ملخص باللغة العربية
The KNN approach, which is widely used in recommender systems because of its efficiency, robustness and interpretability, is proposed for session-based recommendation recently and outperforms recurrent neural network models. It captures the most recent co-occurrence information of items by considering the interaction time. However, it neglects the co-occurrence information of items in the historical behavior which is interacted earlier and cannot discriminate the impact of items and sessions with different popularity. Due to these observations, this paper presents a new contextual KNN approach to address these issues for session-based recommendation. Specifically, a diffusion-based similarity method is proposed for considering the popularity of vertices in session-item bipartite network, and a candidate selection method is proposed to capture the items that are co-occurred with different historical clicked items in the same session efficiently. Comprehensive experiments are conducted to demonstrate the effectiveness of our KNN approach over the state-of-the-art KNN approach for session-based recommendation on three benchmark datasets.
For present e-commerce platforms, session-based recommender systems are developed to predict users preference for next-item recommendation. Although a session can usually reflect a users current preference, a local shift of the users intention within
Session-based recommendation aims at predicting the next item given a sequence of previous items consumed in the session, e.g., on e-commerce or multimedia streaming services. Specifically, session data exhibits some unique characteristics, i.e., ses
Session-based recommendation aims to predict user the next action based on historical behaviors in an anonymous session. For better recommendations, it is vital to capture user preferences as well as their dynamics. Besides, user preferences evolve o
Different from the traditional recommender system, the session-based recommender system introduces the concept of the session, i.e., a sequence of interactions between a user and multiple items within a period, to preserve the users recent interest.
Session-based recommendation (SBR) focuses on next-item prediction at a certain time point. As user profiles are generally not available in this scenario, capturing the user intent lying in the item transitions plays a pivotal role. Recent graph neur