ﻻ يوجد ملخص باللغة العربية
For present e-commerce platforms, session-based recommender systems are developed to predict users preference for next-item recommendation. Although a session can usually reflect a users current preference, a local shift of the users intention within the session may still exist. Specifically, the interactions that take place in the early positions within a session generally indicate the users initial intention, while later interactions are more likely to represent the latest intention. Such positional information has been rarely considered in existing methods, which restricts their ability to capture the significance of interactions at different positions. To thoroughly exploit the positional information within a session, a theoretical framework is developed in this paper to provide an in-depth analysis of the positional information. We formally define the properties of forward-awareness and backward-awareness to evaluate the ability of positional encoding schemes in capturing the initial and the latest intention. According to our analysis, existing positional encoding schemes are generally forward-aware only, which can hardly represent the dynamics of the intention in a session. To enhance the positional encoding scheme for the session-based recommendation, a dual positional encoding (DPE) is proposed to account for both forward-awareness and backward-awareness. Based on DPE, we propose a novel Positional Recommender (PosRec) model with a well-designed Position-aware Gated Graph Neural Network module to fully exploit the positional information for session-based recommendation tasks. Extensive experiments are conducted on two e-commerce benchmark datasets, Yoochoose and Diginetica and the experimental results show the superiority of the PosRec by comparing it with the state-of-the-art session-based recommender models.
Different from the traditional recommender system, the session-based recommender system introduces the concept of the session, i.e., a sequence of interactions between a user and multiple items within a period, to preserve the users recent interest.
Session-based recommendation aims at predicting the next item given a sequence of previous items consumed in the session, e.g., on e-commerce or multimedia streaming services. Specifically, session data exhibits some unique characteristics, i.e., ses
Session-based recommendation aims to predict user the next action based on historical behaviors in an anonymous session. For better recommendations, it is vital to capture user preferences as well as their dynamics. Besides, user preferences evolve o
Session-based recommendation (SBR) focuses on next-item prediction at a certain time point. As user profiles are generally not available in this scenario, capturing the user intent lying in the item transitions plays a pivotal role. Recent graph neur
Session-based recommendation targets next-item prediction by exploiting user behaviors within a short time period. Compared with other recommendation paradigms, session-based recommendation suffers more from the problem of data sparsity due to the ve