ﻻ يوجد ملخص باللغة العربية
In this proceeding, we will briefly review our recent progress on implementing deep learning to relativistic hydrodynamics. We will demonstrate that a successfully designed and trained deep neural network, called {tt stacked U-net}, can capture the main features of the non-linear evolution of hydrodynamics, which could also rapidly predict the final profiles for various testing initial conditions.
Relativistic hydrodynamics is a powerful tool to simulate the evolution of the quark gluon plasma (QGP) in relativistic heavy ion collisions. Using 10000 initial and final profiles generated from 2+1-d relativistic hydrodynamics VISH2+1 with MC-Glaub
We propose a deep learning method to build an AdS/QCD model from the data of hadron spectra. A major problem of generic AdS/QCD models is that a large ambiguity is allowed for the bulk gravity metric with which QCD observables are holographically cal
In this paper, we implement Principal Component Analysis (PCA) to study the single particle distributions generated from thousands of {tt VISH2+1} hydrodynamic simulations with an aim to explore if a machine could directly discover flow from the huge
A newly proposed framework of perfect-fluid relativistic hydrodynamics for particles with spin 1/2 is briefly reviewed. The hydrodynamic equations follow entirely from the conservation laws for energy, momentum, and angular momentum. The incorporatio
Relativistic dissipative hydrodynamics including hydrodynamic fluctuations is formulated by putting an emphasis on non-linearity and causality. As a consequence of causality, dissipative currents become dynamical variables and noises appeared in an i