ﻻ يوجد ملخص باللغة العربية
Many recent experiments addressed manifestations of electronic crystals, particularly the charge density waves, in nano-junctions, under electric field effect, at high magnetic fields, together with real space visualizations by STM and micro X-ray diffraction. This activity returns the interest to stationary or transient states with static and dynamic topologically nontrivial configurations: electronic vortices as dislocations, instantons as phase slip centers, and ensembles of microscopic solitons. Describing and modeling these states and processes calls for an efficient phenomenological theory which should take into account the degenerate order parameter, various kinds of normal carriers and the electric field. Here we notice that the commonly employed time-depend Ginzburg-Landau approach suffers with violation of the charge conservation law resulting in unphysical generation of particles which is particularly strong for nucleating or moving electronic vortices. We present a consistent theory which exploits the chiral transformations taking into account the principle contribution of the fermionic chiral anomaly to the effective action. The resulting equations clarify partitions of charges, currents and rigidity among subsystems of the condensate and normal carriers. On this basis we perform the numerical modeling of a spontaneously generated coherent sequence of phase slips - the space-time vortices - serving for the conversion among the injected normal current and the collective one.
This brief review recalls some chapters in theory of sliding incommensurate density waves which may have appeared after inspirations from studies of I.E Dzyaloshinskii and collaborations with him. First we address the spin density waves which rich or
We present a general scheme to approach the space - time evolution of deformations, currents, and the electric field in charge density waves related to appearance of intrinsic topological defects: dislocations, their loops or pairs, and solitons. We
The chiral anomaly is a fundamental quantum mechanical phenomenon which is of great importance to both particle physics and condensed matter physics alike. In the context of QED it manifests as the breaking of chiral symmetry in the presence of elect
We present the nonlinear fluctuating hydrodynamics which governs the late time dynamics of a chaotic many-body system with simultaneous charge/mass, dipole/center of mass, and momentum conservation. This hydrodynamic effective theory is unstable belo
We develop a coarse-grained description of the point-vortex model, finding that a large number of planar vortices and antivortices behave as an inviscid non-Eulerian fluid at large scales. The emergent binary vortex fluid is subject to anomalous stre