ﻻ يوجد ملخص باللغة العربية
We present a general scheme to approach the space - time evolution of deformations, currents, and the electric field in charge density waves related to appearance of intrinsic topological defects: dislocations, their loops or pairs, and solitons. We derive general equations for the multi-fluid hydrodynamics taking into account the collective mode, electric field, normal electrons, and the intrinsic defects. These equations may allow to study the transformation of injected carriers from normal electrons to new periods of the charge density wave, the collective motion in constrained geometry, and the plastic states and flows. As an application, we present analytical and numerical solutions for distributions of fields around an isolated dislocation line in the regime of nonlinear screening by the gas of phase solitons.
This brief review recalls some chapters in theory of sliding incommensurate density waves which may have appeared after inspirations from studies of I.E Dzyaloshinskii and collaborations with him. First we address the spin density waves which rich or
Experimental signatures of charge density waves (CDW) in high-temperature superconductors have evoked much recent interest, yet an alternative interpretation has been theoretically raised based on electronic standing waves resulting from quasiparticl
Ground state reconstruction by creation of topological defects in junctions of CDWs is a convenient playground for modern efforts of field-effect transformations in strongly correlated materials with spontaneous symmetry breakings. Being transient, t
The transport and noise properties of Pr_{0.7}Ca_{0.3}MnO_{3} epitaxial thin films in the temperature range from room temperature to 160 K are reported. It is shown that both the broadband 1/f noise properties and the dependence of resistance on elec
We formulate a theory of dissipative hydrodynamics with spontaneously broken translations, describing charge density waves in a clean isotropic electronic crystal. We identify a novel linear transport coefficient, lattice pressure, capturing the effe